• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Space and time scales of mesoscale motion in the western North Atlantic

    Thumbnail
    View/Open
    WHOI-78-45.pdf (132.6Mb)
    Date
    2018-08
    Author
    Richman, James G.  Concept link
    Wunsch, Carl  Concept link
    Hogg, Nelson G.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/10608
    DOI
    10.1575/1912/10608
    Keyword
     Ocean temperature; Thermoclines 
    Abstract
    From moored data, primarily temperature, of the Mid-Ocean Dynamics Experiment (ModeI) and its successor experiments we find a statistical description of the mesoscale variability. In the ModeI area itself the spectral characteristics of the thermocline and the deep water are different. The thermocline is conveniently described as being made up of three spectral bands: a ' low-frequency' band dominated by zonal velocity fluctuations, an 'eddy-containing' band in which the velocity field is nearly isotropic, and a 'high-frequency' band consistent with models of geostrophic turbulence. In the deep water the zonal dominance at low frequencies is not apparent, and there is enhanced energy at periods of 20-50 days. Vertical structure scales with WK BJ approximation in the high-frequency band but not in the lower frequencies, where low vertical modes dominate the motion. Linear models do not adequately describe the data in the ModeI region. Differences between rough and smooth topography regions are clearly seen only at 1500 m, where there is a loss of energy consistent with a reduced barotropic motion. Other differences, while apparently real, are small. It is found, consistent with the results of Schmitz (1976a), that the ModeI region is atypical of the midocean in that large changes of energy level are found elsewhere. A region due east of ModeI has slightly reduced kinetic energy levels in the main thermocline, but deep energy levels are much lower. Potential energy is less variable than kinetic; in the eastern region the frequency spectra change structure slightly. Linear models may be more adequate there. With more than 2 years of data, no statistically significant heat flux was found in the ModeI area, except for a weak zonal flux in the deep water. There is no direct evidence for baroclinic instability as a significant mechanism of eddy generation; the Gulf Stream is a possible, if unconfirmed, source.
    Description
    Also published as Reviews of Geophysics and Space Physics, Vol. 15, No. 4, November 1977, pp. 385-420
    Collections
    • Physical Oceanography (PO)
    • WHOI Technical Reports
    Suggested Citation
    Richman, J. G., Wunsch, C., & Hogg, N. G. (2018). Space and time scales of mesoscale motion in the western North Atlantic. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10608
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo