Partitioning of kinetic energy in the Arctic Ocean's Beaufort Gyre
Date
2018-07-10Author
Zhao, Mengnan
Concept link
Timmermans, Mary-Louise
Concept link
Krishfield, Richard A.
Concept link
Manucharyan, Georgy E.
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/10555As published
https://doi.org/10.1029/2018JC014037DOI
10.1029/2018JC014037Keyword
Beaufort Gyre kinetic energy; Mesoscale eddies; Energy pathways; Barotropic and baroclinic modesAbstract
Kinetic energy (KE) in the Arctic Ocean's Beaufort Gyre is dominated by the mesoscale eddy field that plays a central role in the transport of freshwater, heat, and biogeochemical tracers. Understanding Beaufort Gyre KE variability sheds light on how this freshwater reservoir responds to wind forcing and sea ice and ocean changes. The evolution and fate of mesoscale eddies relate to energy pathways in the ocean (e.g., the exchange of energy between barotropic and baroclinic modes). Mooring measurements of horizontal velocities in the Beaufort Gyre are analyzed to partition KE into barotropic and baroclinic modes and explore their evolution. We find that a significant fraction of water column KE is in the barotropic and the first two baroclinic modes. We explain this energy partitioning by quantifying the energy transfer coefficients between the vertical modes using the quasi‐geostrophic potential vorticity conservation equations with a specific background stratification observed in the Beaufort Gyre. We find that the quasi‐geostrophic vertical mode interactions uphold the persistence of KE in the first two baroclinic modes, consistent with observations. Our results explain the specific role of halocline structure on KE evolution in the gyre and suggest depressed transfer to the barotropic mode. This limits the capacity for frictional dissipation at the sea floor and suggests that energy dissipation via sea ice‐ocean drag may be prominent.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4806-4819, doi:10.1029/2018JC014037.
Collections
Suggested Citation
Journal of Geophysical Research: Oceans 123 (2018): 4806-4819Related items
Showing items related by title, author, creator and subject.
-
Production and destruction of eddy kinetic energy in forced submesoscale eddy-resolving simulations
Mukherjee, Sonaljit; Ramachandran, Sanjiv; Tandon, Amit; Mahadevan, Amala (2016-12-02)We study the production and dissipation of the eddy kinetic energy (EKE) in a submesoscale eddy field forced with downfront winds using the Process Study Ocean Model (PSOM) with a horizontal grid resolution of 0.5 km. We ... -
Vertical kinetic energy and turbulent dissipation in the ocean
Thurnherr, Andreas M.; Kunze, Eric; Toole, John M.; St. Laurent, Louis C.; Richards, Kelvin J.; Ruiz-Angulo, Angel (John Wiley & Sons, 2015-09-21)Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ε is presented using more than ... -
Near-inertial kinetic energy budget of the mixed layer and shear evolution in the transition layer in the Arabian Sea during the monsoons
Majumder, Sudip; Tandon, Amit; Rudnick, Daniel L.; Farrar, J. Thomas (John Wiley & Sons, 2015-09-26)We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed layer and explain shear evolution in the transition layer using observations from a mooring at 15.26° N in the Arabian Sea during ...