• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Applied Ocean Physics and Engineering (AOP&E)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Understanding deep-water striation patterns and predicting the waveguide invariant as a distribution depending on range and depth

    Thumbnail
    View/Open
    1.5040982.pdf (2.973Mb)
    Date
    2018-06-08
    Author
    Emmetiere, Remi  Concept link
    Bonnel, Julien  Concept link
    Gehant, Marie  Concept link
    Cristol, Xavier  Concept link
    Chonavel, Thierry  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/10516
    As published
    https://doi.org/10.1121/1.5040982
    DOI
    10.1121/1.5040982
    Abstract
    The Waveguide Invariant (WI) theory has been introduced to quantify the orientation of the intensity interference patterns in a range-frequency domain. When the sound speed is constant over the water column, the WI is a scalar with the canonical value of 1. But, when considering shallow waters with a stratified sound speed profile, the WI ceases to be constant and is more appropriately described by a distribution, which is mainly sensitive to source/receiver depths. Such configurations have been widely investigated, with practical applications including passive source localization. However, in deep waters, the interference pattern is much more complex and variable. In fact the observed WI varies with source/receiver depth but it also varies very quickly with source-array range. In this paper, the authors investigate two phenomena responsible for this variability, namely the dominance of the acoustic field by groups of modes and the frequency dependence of the eigenmodes. Using a ray-mode approach, these two features are integrated in a WI distribution derivation. Their importance in deep-water is validated by testing the calculated WI distribution against a reference distribution directly measured on synthetic data. The proposed WI derivation provides a thorough way to predict and understand the striation patterns in deep-water context.
    Description
    Author Posting. © Acoustical Society of America, 2018. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 143 (2018): 3444, doi:10.1121/1.5040982.
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    Suggested Citation
    Journal of the Acoustical Society of America 143 (2018): 3444
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo