Deepwater expansion and enhanced remineralization in the eastern equatorial Pacific during the last glacial maximum
Date
2018-06-04Author
Umling, Natalie E.
Concept link
Thunell, Robert C.
Concept link
Bizimis, Michael
Concept link
Metadata
Show full item recordCitable URI
https://hdl.handle.net/1912/10511As published
https://doi.org/10.1029/2017PA003221DOI
10.1029/2017PA003221Keyword
Glacial; Benthic foraminifera; Circulation; Cadmium; Carbon isotopes; DeglaciationAbstract
Published estimates of the radiocarbon content of middepth waters suggest a decrease in ventilation in multiple locations during the last glacial maximum (LGM; 24.0–18.1 ka). Reduced glacial ventilation would have allowed respired carbon to accumulate in those waters. A subsequent deglacial release of this respired carbon reservoir to the atmosphere could then account for the observed increases in atmospheric CO2 and decline in atmospheric radiocarbon content. However, age model error and a release of 14C‐depleted mantle carbon have also been cited as possible explanations for the observed middepth radiocarbon depletions, calling into question the deep ocean's role in storing respired carbon during the LGM. Joint measurements of benthic foraminiferal carbon isotope values (δ13C) and cadmium/calcium (Cd/Ca) ratios provide a method for isolating the air‐sea component of a water mass from changes in remineralization. Here we use benthic foraminiferal δ13C and Cd/Ca records from the eastern equatorial Pacific to constrain changes in remineralization and water‐mass mixing over the last glacial‐interglacial transition. These records are complemented with elemental measurements of the authigenic coatings of foraminifera to monitor postdepositional changes in bottom water properties. Our results suggest an increase of deep waters at midwater depths consistent with a shoaling of the boundary between the upper and lower branches of Southern Ocean overturning circulation. Additionally, our records demonstrate increased organic matter remineralization in middepth waters during the LGM, suggesting that respired carbon did accumulate in middepth waters under periods of reduced ventilation.
Description
Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 563-578, doi:10.1029/2017PA003221.
Collections
Suggested Citation
Paleoceanography and Paleoclimatology 33 (2018): 563-578Related items
Showing items related by title, author, creator and subject.
-
An organic geochemical approach to problems of glacial-interglacial climatic variability
Jasper, John P. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1988-05)The concentration and carbon isotopic composition (δ13C) of sedimentary organic carbon (Corg), N/C ratios, and terrigenous and marine δ13C-Corg end-members form a basis from which to address problems of Late Quaternary ... -
Glacial to Holocene swings of the Australian–Indonesian monsoon
Mohtadi, Mahyar; Oppo, Delia W.; Steinke, Stephan; Stuut, Jan-Berend W.; De Pol-Holz, Ricardo; Hebbeln, Dierk; Luckge, Andreas (2011-06)The Australian-Indonesian monsoon is an important component of the climate system in the tropical Indo-Pacific region. However, its past variability, relation with northern and southern high latitude climate and connection ... -
Obliquity pacing of the late Pleistocene glacial terminations
Huybers, Peter; Wunsch, Carl (2005-01-24)The timing of glacial/interglacial cycles at intervals of about 100,000 yr (100 kyr) is commonly attributed to control by Earth orbital configuration variations. This “pacemaker” hypothesis has inspired many models, variously ...