• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • Physical Oceanography (PO)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Intraseasonal variability near 10°N in the eastern tropical Pacific Ocean

    Thumbnail
    View/Open
    2005JC002989.pdf (5.936Mb)
    Date
    2006-05-20
    Author
    Farrar, J. Thomas  Concept link
    Weller, Robert A.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/1036
    As published
    https://doi.org/10.1029/2005JC002989
    Related Material/Data
    https://hdl.handle.net/1912/3562
    DOI
    10.1029/2005JC002989
    Abstract
    New in situ observations from 10°N, 125°W during 1997–1998 show strong intraseasonal variability in meridional velocity and sea surface temperature. The 50- to 100-day oscillations in sea surface height (SSH) have long been recognized as a prominent aspect of oceanic variability in the region of 9–13°N in the eastern Pacific Ocean. We use in situ and satellite data to more fully characterize this variability. The oscillations have zonal wavelengths of 550–1650 km and propagate westward in a manner consistent with the dispersion relation for first baroclinic mode, free Rossby waves in the presence of a mean westward flow. Analysis of 9 years of altimetry data shows that the amplitude of the 50- to 100-day SSH variability at 10°N is largest on 90–115°W, with peak amplitudes occurring around April. Some eddies traveling westward at 10–13°N emanate from near the gulfs of Tehuantepec and Papagayo, but eddies sometimes also appear to intensify well away from the coast while in the North Equatorial Current (NEC). The hypothesis that the intraseasonal variability and its annual cycle are associated with baroclinic instability of the NEC is supported by a spatiotemporal correlation between the amplitude of 50- to 100-day variability and the occurrence of westward zonal flows meeting an approximate necessary condition for baroclinic instability. The notion that baroclinic instability may be involved is further corroborated by the tendency of the NEC to weaken while the eddies intensify, even as the wind works to strengthen the current.
    Description
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C05015, doi:10.1029/2005JC002989.
    Collections
    • Physical Oceanography (PO)
    Suggested Citation
    Journal of Geophysical Research 111 (2006): C05015
     
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo