Vertical coherence of the internal wave field from towed sensors
Citable URI
https://hdl.handle.net/1912/10337DOI
10.1575/1912/10337Keyword
Internal wavesAbstract
Constant depth and isopycnal‐following tows are used to estimate the, towed vertical coherence of the internal wave field, at vertical separations of 8.5, 18, 28 and 70 m. The depths of the tows are ∼750 m at the maximum of the buoyancy frequency in the main thermocline of the Sargasso Sea, and near 350 m in the buoyancy frequency minimum between the main and seasonal thermoclines.
The towed spectra and towed vertical coherence are compared with three model spectra (GM75, GM76 and IWEX): at 750 m the agreement between data and models is very good, with IWEX being slightly better. At 350 m several of the measured towed vertical coherence spectra are more complex than the spectra from the deeper tows, there are anomalously high coherences in a band from 0.7 to 2 cycles per kilometer that are not predictable by the models. We suggest this coherence bump may be evidence of Eckart resonance, i.e., modes tunneling between the two thermoclines into the region of low buoyancy frequency.
Description
Also published as: Journal
of Physical Oceanography 9 (1979): 518-530
Collections
Suggested Citation
Katz, E. J., & Briscoe, M. G. (1979). Vertical coherence of the internal wave field from towed sensors. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10337Related items
Showing items related by title, author, creator and subject.
-
International marine science research projects : second inventory of international projects at Sea Grant institutions, 1990
Fenwick, Judith; Ross, David A.; Schramm, Cynthia T. (Woods Hole Oceanographic Institution, 1991-03)This inventory of marine science projects at Sea Grant institutions was completed in order to gauge the level and enhance a database of U.S./foreign collaboration in international marine research initiated at U.S. Sea ... -
South China Sea internal tide/internal waves-impact on the temporal variability of horizontal array gain at 276 Hz
Orr, Marshall H.; Pasewark, Bruce H.; Wolf, Stephen N.; Lynch, James F.; Schroeder, Theodore; Chiu, Ching-Sang (IEEE, 2004-10)The temporal variability of the spatial coherence of an acoustic signal received on a bottomed horizontal array has been calculated for 276-Hz narrow-band signals. A conventional plane wave beamformer was applied to the ... -
Acoustic travel time perturbations due to an internal tide and internal wave field in the Barents Sea
Ray, Douglas S. (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1993-08)Travel time perturbations of adiabatic normal modes due to an internal tide and internal mode field in the Barents Sea are examined. A formalism for the travel time perturbation due to a change in sound speed is presented. ...