Salt marsh sediment bacterial communities maintain original population structure after transplantation across a latitudinal gradient
Citable URI
https://hdl.handle.net/1912/10326As published
https://doi.org/10.7717/peerj.4735DOI
10.7717/peerj.4735Abstract
Dispersal and environmental selection are two of the most important factors that govern the distributions of microbial communities in nature. While dispersal rates are often inferred by measuring the degree to which community similarity diminishes with increasing geographic distance, determining the extent to which environmental selection impacts the distribution of microbes is more complex. To address this knowledge gap, we performed a large reciprocal transplant experiment to simulate the dispersal of US East Coast salt marsh Spartina alterniflora rhizome-associated microbial sediment communities across a latitudinal gradient and determined if any shifts in microbial community composition occurred as a result of the transplantation. Using bacterial 16S rRNA gene sequencing, we did not observe large-scale changes in community composition over a five-month S. alterniflora summer growing season and found that transplanted communities more closely resembled their origin sites than their destination sites. Furthermore, transplanted communities grouped predominantly by region, with two sites from the north and three sites to the south hosting distinct bacterial taxa, suggesting that sediment communities transplanted from north to south tended to retain their northern microbial distributions, and south to north maintained a southern distribution. A small number of potential indicator 16S rRNA gene sequences had distributions that were strongly correlated to both temperature and nitrogen, indicating that some organisms are more sensitive to environmental factors than others. These results provide new insight into the microbial biogeography of salt marsh sediments and suggest that established bacterial communities in frequently-inundated environments may be both highly resistant to invasion and resilient to some environmental shifts. However, the extent to which environmental selection impacts these communities is taxon specific and variable, highlighting the complex interplay between dispersal and environmental selection for microbial communities in nature.
Description
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 6 (2018): e4735, doi:10.7717/peerj.4735.
Collections
Suggested Citation
PeerJ 6 (2018): e4735The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Response of dark respiration to temperature in Eriophorum vaginatum from a 30-year-old transplant experiment in Alaska
van de Weg, Martine J.; Fetcher, Ned; Shaver, Gaius R. (2012-09)Background: In the Arctic region, temperature increases are expected to be greater under anticipated climate change than the global average. Understanding how dark respiration (Rd) of common Arctic plant species acclimates ... -
Home site advantage in two long-lived arctic plant species : results from two 30-year reciprocal transplant studies
Bennington, Cynthia C.; Fetcher, Ned; Vavrek, Milan C.; Shaver, Gaius R.; Cummings, Kelli J.; McGraw, James B. (2012-03-30)Reciprocal transplant experiments designed to quantify genetic and environmental effects on phenotype are powerful tools for the study of local adaptation. For long-lived species, especially those in habitats with short ... -
Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics
Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.; Shaiber, Alon; Esen, Ozcan C.; Hubert, Nathaniel A.; Morrison, Hilary G.; Antonopoulos, Dionysios A.; Rubin, David T.; Eren, A. Murat (BioMed Central, 2017-05-04)Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack ...