Formation of fast-spreading lower oceanic crust as revealed by a new Mg–REE coupled geospeedometer
Citable URI
https://hdl.handle.net/1912/10307As published
https://doi.org/10.1016/j.epsl.2018.01.032DOI
10.1016/j.epsl.2018.01.032Keyword
Oceanic crust; Cooling rate; Crystallization temperature; Plagioclase; Clinopyroxene; Hess DeepAbstract
A new geospeedometer is developed based on the differential closures of Mg and rare earth element (REE) bulk-diffusion between coexisting plagioclase and clinopyroxene. By coupling the two elements with distinct bulk closure temperatures, this speedometer can numerically solve the initial temperatures and cooling rates for individual rock samples. As the existing Mg-exchange thermometer was calibrated for a narrow temperature range and strongly relies on model-dependent silica activities, a new thermometer is developed using literature experimental data. When the bulk closure temperatures of Mg and REE are determined, respectively, using this new Mg-exchange thermometer and the existing REE-exchange thermometer, this speedometer can be implemented for a wide range of compositions, mineral modes, and grain sizes.
Applications of this new geospeedometer to oceanic gabbros from the fast-spreading East Pacific Rise at Hess Deep reveal that the lower oceanic crust crystallized at temperatures of 998–1353 °C with cooling rates of 0.003–10.2 °C/yr. Stratigraphic variations of the cooling rates and crystallization temperatures support deep hydrothermal circulations and in situ solidification of various replenished magma bodies. Together with existing petrological, geochemical and geophysical evidence, results from this new speedometry suggest that the lower crust formation at fast-spreading mid-ocean ridges involves emplacement of primary mantle melts in the deep section of the crystal mush zone coupled with efficient heat removal by crustal-scale hydrothermal circulations. The replenished melts become chemically and thermally evolved, accumulate as small magma bodies at various depths, feed the shallow axial magma chamber, and may also escape from the mush zone to generate off-axial magma lenses.
Description
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 487 (2018): 165-178, doi:10.1016/j.epsl.2018.01.032.
Collections
Suggested Citation
Earth and Planetary Science Letters 487 (2018): 165-178The following license files are associated with this item:
Related items
Showing items related by title, author, creator and subject.
-
Dimensions of continents and oceans – water has carved a perfect cistern
Whitehead, John A. (2017-03-26)The ocean basins have almost exactly the correct surface area and average depth to hold Earth’s water. This study asserts that three processes are responsible for this. First, the crust is thickened by lateral compression ... -
Dynamic accretion beneath a slow-spreading ridge segment: IODP hole 1473A and the Atlantis Bank oceanic core complex
Dick, Henry J. B.; MacLeod, Christopher J.; Blum, Peter; Abe, Natsue; Blackman, Donna K.; Bowles, Julie A.; Cheadle, Michael J.; Cho, K.; Ciazela, Jakub; Deans, Jeremy; Edgcomb, Virginia P.; Ferrando, Carlotta; France, Lydéric; Ghosh, Biswajit; Ildefonse, Benoit; John, Barbara E.; Kendrick, Mark A.; Koepke, Juergen; Leong, James; Liu, Chuanzhou; Ma, Qiang; Morishita, Tomoaki; Morris, Antony; Natland, James H.; Nozaka, Toshio; Pluemper, Oliver; Sanfilippo, Alessio; Sylvan, Jason B.; Tivey, Maurice A.; Tribuzio, Riccardo; Viegas, G. (American Geophysical Union, 2019-11-07)809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It ... -
Velocity structure of upper ocean crust at Ocean Drilling Program Site 1256
Swift, Stephen A.; Reichow, Marc; Tikku, Anahita; Tominaga, Masako; Gilbert, Lisa A. (American Geophysical Union, 2008-10-16)We examine shipboard physical property measurements, wireline logs, and vertical seismic profiles (VSP) from Ocean Drilling Program/Integrated Ocean Drilling Program Hole 1256D in 15 Ma ocean crust formed at superfast ...