Reversible and irreversible finestructure
Reversible and irreversible finestructure
Date
1981-09
Authors
Desaubies, Yves
Gregg, Michael C.
Gregg, Michael C.
Linked Authors
Files
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
10.1575/1912/10285
Replaced By
Keywords
Fine-structure constant
Waves
Ocean temperature
Waves
Ocean temperature
Abstract
Various statistics of temperature profiles are examined in an attempt to distinguish irreversible structures
due to mixing from reversible distortions induced by internal wave straining. Even if all the low
gradient regions were the result of mixing events, an analysis of the profiles shows that such events are
rare and most often incomplete. An upper bound on the mixing effectiveness is obtained; it increases
as the vertical scale decreases. Taking next the opposite view that internal wave straining is the sole
process, an analytic model is developed to calculate the probability density function of temperature
gradients. The model considers the straining by a weakly nonlinear Gaussian internal wave field of a
linear temperature profile. The nonlinearity of the field is essential to account for the skewness of the
probability distributions. Comparisons with data are quite satisfactory at scales larger than - 2m, less
so at smaller scales. We conclude that nonlinear effects are important; at scales larger than - 2 m straining
is dominant with very little mixing, while at smaller scales irreversible structures are more prevalent.
Description
Also published as: Journal. of Physical Oceanography 11 (1981): 541-546
Embargo Date
Citation
Desaubies, Y., & Gregg, M. C. (1981). Reversible and irreversible finestructure. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10285