Upper ocean response to a hurricane
Citable URI
https://hdl.handle.net/1912/10271DOI
10.1575/1912/10271Keyword
Hurricanes; Ocean-atmosphere interactionAbstract
The upper ocean response to a moving hurricane is studied using historical air-sea data and a three-dimensional
numerical ocean model. Sea surface temperature (SST) response is emphasized. The model has
a surface mixed-layer (ML) that entrains according to a velocity dependent parameterization, and two
lower layers that simulate the response in the thermocline.
The passage of Hurricane Eloise (1975) over buoy EB-10 is simulated in detail. SST decreased 2°C
as Eloise passed directly over EB-10 at 8.5 m s-1. Model results indicate that entrainment caused 85%
of the irreversible heat flux into the ML; air-sea heat exchange accounted for the remainder. The maximum
SST response was predicted to be -3°C and to occur 60 km to the right of the hurricane track. This is
consistent with the well-documented rightward bias in the SST response to rapidly moving hurricanes.
The rightward bias occurs in the model solution because the hurricane wind-stress vector turns clockwise
with time on the right side of the track and is roughly resonant with the ML velocity. High ML velocities
cause strong entrainment and thus a strong SST response.
Model comparisons with EB-10 data suggest that a wind-speed-dependent drag coefficient similar to
Garratt's (1977) is appropriate for hurricane conditions. A constant drag coefficient 1.5 x w-s underpredicts
the amplitude of upwelling and the SST response by -40%.
Numerical experiments show that the response has a lively dependence on a number of air-sea parameters. Intense, slowly moving hurricanes cause the largest response. The SST response is largest where cold
water is near the sea surface, i.e., where the initial ML is thin and the upper thermocline temperature
gradient is sharp.
Nonlocal processes are important to some aspects of the upper ocean response. Upwelling significantly
enhances entrainment under slowly moving hurricanes (≤4 m s-1) and reduces the rightward bias of the
SST response. Horizontal advection dominates the pointwise ML heat balance during the several-day
period following a hurricane passage. Pressure gradients set up by the upwelling do not play an important
role in the entrainment process, but are an effective mechanism for dispersing energy from the ML over a
5-10 day time scale.
Description
Also published as: Journal of Physical Oceanography 11 (1981): 153-175
Collections
Suggested Citation
Price, J. F. (1981). Upper ocean response to a hurricane. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10271Related items
Showing items related by title, author, creator and subject.
-
The CBLAST-Hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction
Chen, Shuyi S.; Zhao, Wei; Donelan, Mark A.; Price, James F.; Walsh, Edward J. (American Meteorological Society, 2007-03)The record-setting 2005 hurricane season has highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity, and for the development of corresponding advanced hurricane ... -
Impacts of oceanic mixed layer on hurricanes: a simulation experiment with Hurricane Sandy
Li, Siqi; Chen, Changsheng; Wu, Zhongxiang; Beardsley, Robert C.; Li, Ming (American Geophysical Union, 2020-10-07)Influences of the ocean mixed layer (OML) dynamics on intensity, pathway, and landfall of October 2012 Hurricane Sandy were examined through an experiment using the Weather Research and Forecasting (WRF) model. The WRF ... -
Metrics of hurricane-ocean interaction : vertically-integrated or vertically-averaged ocean temperature?
Price, James F. (Copernicus Publications on behalf of the European Geosciences Union, 2009-05-05)The ocean thermal field is often represented in hurricane-ocean interaction by a metric termed upper Ocean Heat Content (OHC), the vertical integral of ocean temperature in excess of 26°C. High values of OHC have proven ...