• Login
    About WHOAS
    View Item 
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    •   WHOAS Home
    • Woods Hole Oceanographic Institution
    • WHOI Technical Reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WHOASCommunities & CollectionsBy Issue DateAuthorsTitlesKeywordsThis CollectionBy Issue DateAuthorsTitlesKeywords

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Bottom interaction of low-frequency acoustic signals at small grazing angles in the deep ocean

    Thumbnail
    View/Open
    WHOI 81-64.pdf (4.379Mb)
    Date
    1981-07
    Author
    Frisk, George V.  Concept link
    Doutt, James A.  Concept link
    Hays, Earl E.  Concept link
    Metadata
    Show full item record
    Citable URI
    https://hdl.handle.net/1912/10269
    DOI
    10.1575/1912/10269
    Keyword
     Marine sediments; Acoustical engineering 
    Abstract
    The results of a deep-ocean bottom interaction experiment are presented in which the effects of both bottom refraction and subbottom reflection were observed. Data were obtained in the Hatteras Abyssal Plain using a deep towed 220-Hz pulsed cw source and two receivers anchored near the bottom. For ranges between 1 and 6 km, corresponding to bottom grazing angles less than 13°, the quadrature components of the received signals were recorded digitally. The observed amplitude shows a strong spatial interference pattern which is composed of the direct and bottom interacting arrivals. It is shown that for small source-receiver separations, the bottom return is dominated by a strong subbollom reflection. With increasing separation, this arrival evolves into a refracted arrival due to the presence of a positive sound-speed gradient in the sediment overlying the subbottom. Because of the gradient, a caustic is formed, and corresponding high intensity regions are observed in the data at the expected ranges. Values of sediment layer thickness, sound-speed gradient, and sound-speed drop at the water-bollom interface are obtained from best fits to the data using ray theory, normal mode theory, and the parabolic equation method. These values are consistent with those obtained in nearby locations by other workers. The success of the parabolic equation method indicates that at small grazing angles, the bottom interaction process may be modeled as a propagation process combined with the effect of a perfect, soft subbollom reflector. A value of sediment attenuation, 0.0015 dB/mat 220Hz, is also inferred from the data and is among the lowest values reported to date in the literature.
    Description
    Also published as: Journal of the Acoustical Society of America 69 (1981): 84-94
    Collections
    • Applied Ocean Physics and Engineering (AOP&E)
    • WHOI Technical Reports
    Suggested Citation
    Frisk, G. V., Doutt, J. A., & Hays, E. E. (1981). Bottom interaction of low-frequency acoustic signals at small grazing angles in the deep ocean. Woods Hole Oceanographic Institution. https://doi.org/10.1575/1912/10269
     

    Related items

    Showing items related by title, author, creator and subject.

    • Thumbnail

      Deep seafloor arrivals in long range ocean acoustic propagation 

      Stephen, Ralph A.; Bolmer, S. Thompson; Udovydchenkov, Ilya A.; Worcester, Peter F.; Dzieciuch, Matthew A.; Andrew, Rex K.; Mercer, James A.; Colosi, John A.; Howe, Bruce M. (Acoustical Society of America, 2013-10)
      Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean ...
    • Thumbnail

      Sonar-induced pressure fields in a post-mortem common dolphin 

      Foote, Kenneth G.; Hastings, Mardi C.; Ketten, Darlene R.; Lin, Ying-Tsong; Reidenberg, Joy S.; Rye, Kent (Acoustical Society of America, 2012-02)
      Potential physical effects of sonar transmissions on marine mammals were investigated by measuring pressure fields induced in a 119-kg, 211-cm-long, young adult male common dolphin (Delphinus delphis) cadaver. The specimen ...
    • Thumbnail

      Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range 

      Duda, Timothy F.; Lin, Ying-Tsong; Reeder, D. Benjamin (Acoustical Society of America, 2011-09)
      A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional ...
    All Items in WHOAS are protected by original copyright, with all rights reserved, unless otherwise indicated. WHOAS also supports the use of the Creative Commons licenses for original content.
    A service of the MBLWHOI Library | About WHOAS
    Contact Us | Send Feedback | Privacy Policy
    Core Trust Logo