Five factors can reconstitute all three phases of microtubule polymerization dynamics

Thumbnail Image
Date
2016-10-31
Authors
Moriwaki, Takashi
Goshima, Gohta
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1083/jcb.201604118
Related Materials
Replaces
Replaced By
Keywords
Abstract
Cytoplasmic microtubules (MTs) undergo growth, shrinkage, and pausing. However, how MT polymerization cycles are produced and spatiotemporally regulated at a molecular level is unclear, as the entire cycle has not been recapitulated in vitro with defined components. In this study, we reconstituted dynamic MT plus end behavior involving all three phases by mixing tubulin with five Drosophila melanogaster proteins (EB1, XMAP215Msps, Sentin, kinesin-13Klp10A, and CLASPMast/Orbit). When singly mixed with tubulin, CLASPMast/Orbit strongly inhibited MT catastrophe and reduced the growth rate. However, in the presence of the other four factors, CLASPMast/Orbit acted as an inducer of pausing. The mitotic kinase Plk1Polo modulated the activity of CLASPMast/Orbit and kinesin-13Klp10A and increased the dynamic instability of MTs, reminiscent of mitotic cells. These results suggest that five conserved proteins constitute the core factors for creating dynamic MTs in cells and that Plk1-dependent phosphorylation is a crucial event for switching from the interphase to mitotic mode.
Description
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Cell Biology 215 (2016): 357, doi:10.1083/jcb.201604118.
Embargo Date
Citation
Journal of Cell Biology 215 (2016): 357
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 Unported