A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

Thumbnail Image
Date
2015-11
Authors
Kranabetter, J. Marty
McLauchlan, Kendra K.
Enders, Sara K.
Fraterrigo, Jennifer M.
Higuera, Philip E.
Morris, Jesse L.
Rastetter, Edward B.
Barnes, Rebecca T.
Buma, Brian
Gavin, Daniel
Gerhart, Laci M.
Gillson, Lindsey
Hietz, Peter
Mack, Michelle C.
McNeil, Brenden
Perakis, Steven S.
Alternative Title
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Disturbance
Fire regime
Succession
Multiple Element Limitation (MEL) model
Nitrogen stocks
Nutrient ratio
Abstract
Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.
Description
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 19 (2016): 387-395, doi:10.1007/s10021-015-9934-1.
Embargo Date
Citation
Cruises
Cruise ID
Cruise DOI
Vessel Name