Molecular subdivision of the marine diatom Thalassiosira rotula in relation to geographic distribution, genome size, and physiology

Thumbnail Image
Date
2012-10-26
Authors
Whittaker, Kerry A.
Rignanese, Dayna R.
Olson, Robert J.
Rynearson, Tatiana A.
Alternative Title
Date Created
Location
DOI
10.1186/1471-2148-12-209
Replaced By
Keywords
Phytoplankton
Phylogeography
Dispersal
Physiology
Intraspecific diversity
Abstract
Marine phytoplankton drift passively with currents, have high dispersal potentials and can be comprised of morphologically cryptic species. To examine molecular subdivision in the marine diatom Thalassiosira rotula, variations in rDNA sequence, genome size, and growth rate were examined among isolates collected from the Atlantic and Pacific Ocean basins. Analyses of rDNA included T. gravida because morphological studies have argued that T. rotula and T. gravida are conspecific. Culture collection isolates of T. gravida and T. rotula diverged by 7.0 ± 0.3% at the ITS1 and by 0.8 ± 0.03% at the 28S. Within T. rotula, field and culture collection isolates were subdivided into three lineages that diverged by 0.6 ± 0.3% at the ITS1 and 0% at the 28S. The predicted ITS1 secondary structure revealed no compensatory base pair changes among lineages. Differences in genome size were observed among isolates, but were not correlated with ITS1 lineages. Maximum acclimated growth rates of isolates revealed genotype by environment effects, but these were also not correlated with ITS1 lineages. In contrast, intra-individual variation in the multi-copy ITS1 revealed no evidence of recombination amongst lineages, and molecular clock estimates indicated that lineages diverged 0.68 Mya. The three lineages exhibited different geographic distributions and, with one exception, each field sample was dominated by a single lineage. The degree of inter- and intra-specific divergence between T. gravida and T. rotula suggests they should continue to be treated as separate species. The phylogenetic distinction of the three closely-related T. rotula lineages was unclear. On the one hand, the lineages showed no physiological differences, no consistent genome size differences and no significant changes in the ITS1 secondary structure, suggesting there are no barriers to interbreeding among lineages. In contrast, analysis of intra-individual variation in the multicopy ITS1 as well as molecular clock estimates of divergence suggest these lineages have not interbred for significant periods of time. Given the current data, these lineages should be considered a single species. Furthermore, these T. rotula lineages may be ecologically relevant, given their differential abundance over large spatial scales.
Description
© The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 12 (2012): 209, doi:10.1186/1471-2148-12-209.
Embargo Date
Citation
BMC Evolutionary Biology 12 (2012): 209
Cruises
Cruise ID
Cruise DOI
Vessel Name
Collections
Except where otherwise noted, this item's license is described as Attribution 2.0 Generic