Myosin5a tail associates directly with Rab3A-containing compartments in neurons
Myosin5a tail associates directly with Rab3A-containing compartments in neurons
Date
2011-02-21
Authors
Wollert, Torsten
Patel, Anamika
Lee, Ying-Lung
Provance, D. William
Vought, Valarie E.
Cosgrove, Michael S.
Mercer, John A.
Langford, George M.
Patel, Anamika
Lee, Ying-Lung
Provance, D. William
Vought, Valarie E.
Cosgrove, Michael S.
Mercer, John A.
Langford, George M.
Linked Authors
Person
Person
Person
Person
Person
Alternative Title
Citable URI
As Published
Date Created
Location
DOI
Related Materials
Replaces
Replaced By
Keywords
Abstract
Myosin-Va (Myo5a) is a motor protein
associated with synaptic vesicles (SVs) but the
mechanism by which it interacts has not yet
been identified. A potential class of binding
partners are Rab GTPases and Rab3A is known
to associate with SVs and is involved in SV
trafficking. We performed experiments to
determine whether Rab3A interacts with
Myo5a and whether it is required for transport
of neuronal vesicles. In vitro motility assays
performed with axoplasm from the squid giant
axon showed a requirement for a Rab GTPase
in Myo5a-dependent vesicle transport.
Furthermore, mouse recombinant Myo5a tail
revealed that it associated with Rab3A in rat
brain synaptosomal preparations in vitro and
the association was confirmed by
immunofluorescence imaging of primary
neurons isolated from the frontal cortex of
mouse brains. Synaptosomal Rab3A was
retained on recombinant GST-tagged Myo5a
tail affinity columns in a GTP-dependent
manner. Finally, the direct interaction of
Myo5a and Rab3A was determined by
sedimentation v e l o c i t y analytical
ultracentrifugation using recombinant mouse
Myo5a tail and human Rab3A. When both
proteins were incubated in the presence of 1
mM GTPγS, Myo5a tail and Rab3A formed a
complex and a direct interaction was observed.
Further analysis revealed that GTP-bound
Rab3A interacts with both the monomeric and
dimeric species of the Myo5a tail. However, the
interaction between Myo5a tail and nucleotidefree
Rab3A did not occur. Thus, our results
show that Myo5a and Rab3A are direct binding
partners and interact on SVs and that the
Myo5a/Rab3A complex is involved in transport
of neuronal vesicles.
Description
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Biochemistry and Molecular Biology. The definitive version was published in Journal of Biological Chemistry, 286 (2011): 14352-14361, doi:10.1074/jbc.M110.187286.