Forcing of the Atlantic equatorial deep jets derived from observations

Thumbnail Image
Date
2016-11-23
Authors
Claus, Martin
Greatbatch, Richard J.
Brandt, Peter
Toole, John M.
Linked Authors
Alternative Title
Date Created
Location
DOI
10.1175/JPO-D-16-0140.1
Related Materials
Replaces
Replaced By
Keywords
Tropics
Forcing
Shallow-water equations
Waves, oceanic
Oscillations
Interannual variability
Abstract
The equatorial deep jets (EDJs) are a ubiquitous feature of the equatorial oceans; in the Atlantic Ocean, they are the dominant mode of interannual variability of the zonal flow at intermediate depth. On the basis of more than 10 years of moored observations of zonal velocity at 23°W, the vertically propagating EDJs are best described as superimposed oscillations of the 13th to the 23rd baroclinic modes with a dominant oscillation period for all modes of 1650 days. This period is close to the resonance period of the respective gravest equatorial basin mode for the dominant vertical modes 16 and 17. It is argued that since the equatorial basin mode is composed of linear equatorial waves, a linear reduced-gravity model can be employed for each baroclinic mode, driven by spatially homogeneous zonal forcing oscillating with the EDJ period. The fit of the model solutions to observations at 23°W yields a basinwide reconstruction of the EDJs and the associated vertical structure of their forcing. From the resulting vertical profile of mean power input and vertical energy flux on the equator, it follows that the EDJs are locally maintained over a considerable depth range, from 500 to 2500 m, with the maximum power input and vertical energy flux at 1300 m. The strong dissipation closely ties the apparent vertical propagation of energy to the vertical distribution of power input and, together with the EDJs’ prevailing downward phase propagation, requires the phase of the forcing of the EDJs to propagate downward.
Description
Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 3549-3562, doi:10.1175/JPO-D-16-0140.1.
Embargo Date
Citation
Journal of Physical Oceanography 46 (2016): 3549-3562
Cruises
Cruise ID
Cruise DOI
Vessel Name