Skill metrics for evaluation and comparison of sea ice models

Thumbnail Image
Date
2015-09-02
Authors
Dukhovskoy, Dmitry S.
Ubnoske, Jonathan
Blanchard-Wrigglesworth, Edward
Hiester, Hannah R.
Proshutinsky, Andrey
Alternative Title
Date Created
Location
DOI
10.1002/2015JC010989
Related Materials
Replaces
Replaced By
Keywords
Sea ice model
Sea ice model validation
Model skill assessment
Abstract
Five quantitative methodologies (metrics) that may be used to assess the skill of sea ice models against a control field are analyzed. The methodologies are Absolute Deviation, Root-Mean-Square Deviation, Mean Displacement, Hausdorff Distance, and Modified Hausdorff Distance. The methodologies are employed to quantify similarity between spatial distribution of the simulated and control scalar fields providing measures of model performance. To analyze their response to dissimilarities in two-dimensional fields (contours), the metrics undergo sensitivity tests (scale, rotation, translation, and noise). Furthermore, in order to assess their ability to quantify resemblance of three-dimensional fields, the metrics are subjected to sensitivity tests where tested fields have continuous random spatial patterns inside the contours. The Modified Hausdorff Distance approach demonstrates the best response to tested differences, with the other methods limited by weak responses to scale and translation. Both Hausdorff Distance and Modified Hausdorff Distance metrics are robust to noise, as opposed to the other methods. The metrics are then employed in realistic cases that validate sea ice concentration fields from numerical models and sea ice mean outlook against control data and observations. The Modified Hausdorff Distance method again exhibits high skill in quantifying similarity between both two-dimensional (ice contour) and three-dimensional (ice concentration) sea ice fields. The study demonstrates that the Modified Hausdorff Distance is a mathematically tractable and efficient method for model skill assessment and comparison providing effective and objective evaluation of both two-dimensional and three-dimensional sea ice characteristics across data sets.
Description
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 5910–5931, doi:10.1002/2015JC010989.
Embargo Date
Citation
Journal of Geophysical Research: Oceans 120 (2015): 5910–5931
Cruises
Cruise ID
Cruise DOI
Vessel Name
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International