Plagioclase preferred orientation in layered mylonites : evaluation of flow laws for the lower crust

Thumbnail Image
Mehl, Luc
Linked Authors
Alternative Title
As Published
Date Created
Southwest Indian Ridge
Related Materials
Replaced By
We evaluate the applicability of plagioclase and gabbro flow laws by comparing predicted and observed deformation mechanisms in gabbroic shear zones. Gabbros and layered gabbro mylonites were collected from the Southwest Indian Ridge (SWIR), ODP Hole 735B. Deformation temperatures are constrained by two-pyroxene thermometry, stress is estimated from grain size, and deformation mechanisms are analyzed by microstructure and the presence or absence of a lattice preferred orientation (LPO). Our analyses indicate that mylonite layers deformed at a strain rate in the range of 10-12 to 10- 11 s-1, while coarse-grained gabbro deformed at a strain rate of approximately 10-14 to 10- 13 s-1. Plagioclase in pure plagioclase mylonite layers exhibit strong LPOs indicating they deform by dislocation creep. Plagioclase grain size in mixed plagioclase-pyroxene mylonite layers is finer than in pure plagioclase layers, and depends on the size and proportion of pyroxenes. Progressive mixing of pyroxene and plagioclase within gabbro mylonite layers is accompanied by weakening of the LPO indicating that phase mixing promotes a transition to diffusion creep processes that involve grain boundary sliding. Our results indicate that experimental flow laws are accurate at geologic strain rates, although the strain rate for diffusion creep of fine-grained gabbro may be underestimated. At the conditions estimated for the SWIR crust, our calculations suggest that strain localization leads to a factor of two to four decrease in lower crustal viscosity. Even so, the viscosity of lower gabbroic crust is predicted to be similar to that of dry upper mantle.
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008
Embargo Date
Mehl, L. (2008). Plagioclase preferred orientation in layered mylonites : evaluation of flow laws for the lower crust [Doctoral thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server.
Cruise ID
Cruise DOI
Vessel Name