Larval settlement in flocculated particulates

Thumbnail Image
Zimmer, Cheryl Ann
Starczak, Victoria R.
Arch, Victoria S.
Zimmer, Richard K.
Alternative Title
Date Created
Related Materials
Replaced By
Planktonic larval settlement can be a major determinant of population and community dynamics. Settlement templates of benthic invertebrates have been attributed to biological, chemical, and hydrodynamic mechanisms. Completely unexplored, however, is the role of patchy, but widespread, flocculated particulates (“floc”) that intermittently rest on substrate surfaces. Motivated by observations of very high (of order 106 m-3) larval/postlarval densities in floc from a coastal embayment, this study experimentally identified physical and behavioral mechanisms responsible for these associations. In annular-flume studies, sediment cores were mounted flush with the channel bottom, serving as the floc source. Larval (Capitella sp. I, a polychaete worm) distributions in the flume were consistent with predictions for transported particulates. Floc and larvae accumulated at the channel inner corner in high flows (shear velocities, u*, of 0.8 and 1.6 cm s-1), but not in low flows (u* of 0, 0.2 and 0.4 cm s-1). Inner-corner concentrations of larvae/floc resulted from a predictable, cross-channel, bottom flow in that direction. In still-water behavioral assays, there were no significant differences in percent metamorphosis among flocs fabricated from particulate-laden seawater, conspecific fecal pellets (compact floc) and organic-rich sediment. Surficial aggregates clearly were acceptable settlement substratum. This study is the first to show that settling larvae associate with surficial aggregates via both physical and behavioral mechanisms. Floc may be a transient larval venue facilitating habitat search, providing nutrition, or offering protection from predators. Alternatively, it could confer high mortality, reducing larval flux to the bed. Associations between larvae and floc do not supersede established mechanisms of habitat selection. They just thicken the plot.
Author Posting. © The Authors, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 275-297, doi:10.1357/002224008785837167.
Embargo Date
Journal of Marine Research 66 (2008): 275-297
Cruise ID
Cruise DOI
Vessel Name