Winter mixed-layer development in the central Irminger Sea : the effect of strong, intermittent wind events
Winter mixed-layer development in the central Irminger Sea : the effect of strong, intermittent wind events
Date
2006-09
Authors
Våge, Kjetil
Linked Authors
Person
Alternative Title
Citable URI
As Published
Date Created
Location
Southwest Irminger Sea
DOI
10.1575/1912/1775
Related Materials
Replaces
Replaced By
Keywords
Ocean-atmosphere interaction
Hydrography
Hydrography
Abstract
The impact of the Greenland tip jet on the wintertime mixed-layer of the southwest
Irminger Sea is investigated using in-situ moored profiler data and a variety of atmospheric
data sets. The mixed-layer was observed to reach 400 m in the spring of 2003,
and 300 m in the spring of 2004. Both of these winters were mild and characterized by
a low North Atlantic Oscillation (NAO) index. All of the storms that were advected
through the region were tracked, and the tip jet events that occurred throughout the
two winters were identified. Composite images of the tip jets elucidated the conditions
during which tip jets were likely to take place, which led to an objective method
of determining tip jet occurrences by taking into account the large-scale pressure gradients.
Output from a trajectory model indicates that the air parcels entering a tip
jet accelerate and descend as they are deflected around southern Greenland.
A heat flux timeseries for the mooring site was constructed that includes the
enhancing influence of the tip jet events. This was used to drive a one-dimensional
mixed-layer model, which was able to reproduce the observed mixed-layer deepening
in both winters. All of the highest heat flux events took place during tip jets, and
removal of the tip jets from the heat flux timeseries demonstrated their importance
in driving convection east of Greenland. The deeper mixed-layer of the first winter
was in large part due to a higher number of robust tip jet events, which in turn was
caused by a greater number of storms passing northeast of southern Greenland. This
interannual change in storm tracks was attributable to a difference in upper level
steering currents. Application of the mixed-layer model to the winter of 1994-l995,
during a period characterized by a high NAO index, resulted in convection reaching
1600 m. This predict ion is consistent with concurrent hydrographic data, supporting
the notion that deep convection can occur in the Irminger Sea during strong winters.
Description
Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2006
Embargo Date
Citation
Våge, K. (2006). Winter mixed-layer development in the central Irminger Sea : the effect of strong, intermittent wind events [Master's thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution]. Woods Hole Open Access Server. https://doi.org/10.1575/1912/1775