Cowen
Edwin
Cowen
Edwin
No Thumbnail Available
Search Results
Now showing
1 - 2 of 2
-
ArticleRemote determination of the velocity index and mean streamwise velocity profiles(John Wiley & Sons, 2017-09-01) Johnson, Erika D. ; Cowen, EdwinWhen determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, inline image, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.
-
ArticleRemote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics(John Wiley & Sons, 2016-03-24) Johnson, Erika D. ; Cowen, EdwinCurrent methods employed by the United States Geological Survey (USGS) to measure river discharge are manpower intensive, expensive, and during high flow events require field personnel to work in dangerous conditions. Indirect methods of estimating river discharge, which involve the use of extrapolated rating curves, can result in gross error during high flow conditions due to extrapolation error and/or bathymetric change. Our goal is to develop a remote method of monitoring volumetric discharge that reduces costs at the same or improved accuracy compared with current methods, while minimizing risk to field technicians. We report the results of Large-Scale Particle Image Velocimetry (LSPIV) and Acoustic Doppler Velocimetry (ADV) measurements conducted in a wide-open channel under a range of flow conditions, i.e., channel aspect ratio (B/H = 6.6–31.9), Reynolds number (ReH = 4,950–73,800), and Froude number (Fr = 0.04–0.46). Experiments were carried out for two different channel cross sections (rectangular and asymmetric compound) and two bathymetric roughness conditions (smooth glass and rough gravel bed). The results show that the mean surface velocity normalized by the depth-averaged velocity (the velocity index) decreases with increasing δ*/H, where δ* is the boundary layer displacement thickness and that the integral length scales, L11,1 and L22,1, calculated on the free-surface vary predictably with the local flow depth. Remote determination of local depth-averaged velocity and flow depth over a channel cross section yields an estimate of volumetric discharge.