Benoit-Bird Kelly J.

No Thumbnail Available
Last Name
Benoit-Bird
First Name
Kelly J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Diving behavior and fine-scale kinematics of free-ranging Risso's dolphins foraging in shallow and deep-water habitats
    (Frontiers Media, 2019-03-12) Arranz, Patricia ; Benoit-Bird, Kelly J. ; Friedlaender, Ari S. ; Hazen, Elliott L. ; Goldbogen, Jeremy A. ; Stimpert, Alison K. ; DeRuiter, Stacy L. ; Calambokidis, John ; Southall, Brandon L. ; Fahlman, Andreas ; Tyack, Peter L.
    Air-breathing marine predators must balance the conflicting demands of oxygen conservation during breath-hold and the cost of diving and locomotion to capture prey. However, it remains poorly understood how predators modulate foraging performance when feeding at different depths and in response to changes in prey distribution and type. Here, we used high-resolution multi-sensor tags attached to Risso's dolphins (Grampus griseus) and concurrent prey surveys to quantify their foraging performance over a range of depths and prey types. Dolphins (N = 33) foraged in shallow and deep habitats [seabed depths less or more than 560 m, respectively] and within the deep habitat, in vertically stratified prey features occurring at several aggregation levels. Generalized linear mixed-effects models indicated that dive kinematics were driven by foraging depth rather than habitat. Bottom-phase duration and number of buzzes (attempts to capture prey) per dive increased with depth. In deep dives, dolphins were gliding for >50% of descent and adopted higher pitch angles both during descent and ascents, which was likely to reduce energetic cost of longer transits. This lower cost of transit was counteracted by the record of highest vertical swim speeds, rolling maneuvers and stroke rates at depth, together with a 4-fold increase in the inter-buzz interval (IBI), suggesting higher costs of pursuing, and handling prey compared to shallow-water feeding. In spite of the increased capture effort at depth, dolphins managed to keep their estimated overall metabolic rate comparable across dive types. This indicates that adjustments in swimming modes may enable energy balance in deeper dives. If we think of the surface as a central place where divers return to breathe, our data match predictions that central place foragers should increase the number and likely quality of prey items at greater distances. These dolphins forage efficiently from near-shore benthic communities to depth-stratified scattering layers, enabling them to maximize their fitness.
  • Article
    Globally consistent quantitative observations of planktonic ecosystems
    (Frontiers Media, 2019-04-25) Lombard, Fabien ; Boss, Emmanuel S. ; Waite, Anya M. ; Vogt, Meike ; Uitz, Julia ; Stemmann, Lars ; Sosik, Heidi M. ; Schulz, Jan ; Romagnan, Jean-Baptiste ; Picheral, Marc ; Pearlman, Jay ; Ohman, Mark D. ; Niehoff, Barbara ; Möller, Klas O. ; Miloslavich, Patricia ; Lara-Lpez, Ana ; Kudela, Raphael M. ; Lopes, Rubens M. ; Kiko, Rainer ; Karp-Boss, Lee ; Jaffe, Jules S. ; Iversen, Morten H. ; Irisson, Jean-Olivier ; Fennel, Katja ; Hauss, Helena ; Guidi, Lionel ; Gorsky, Gabriel ; Giering, Sarah L. C. ; Gaube, Peter ; Gallager, Scott M. ; Dubelaar, George ; Cowen, Robert K. ; Carlotti, François ; Briseño-Avena, Christian ; Berline, Leo ; Benoit-Bird, Kelly J. ; Bax, Nicholas ; Batten, Sonia ; Ayata, Sakina Dorothée ; Artigas, Luis Felipe ; Appeltans, Ward
    In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.
  • Article
    Diel vertical migrators respond to short-term upwelling events
    (American Geophysical Union, 2024-01-18) Sato, Mei ; Benoit-Bird, Kelly J.
    Pelagic organisms inhabiting coastal upwelling regions face a high risk of advection away from the nearshore productive habitat, potentially leading to mortality. We explored how animals remain in a productive yet highly advective environment in the Northern California Current System using the cabled observatory system located off the Oregon coast. Acoustic scatterers consistent with swimbladder-bearing fish were only present during the downwelling season as these animals avoided the cold waters associated with strong upwelling conditions in summer and fall. Fish responded to short-term upwelling events by increasing the frequency of diel vertical migration. Throughout the study, their vertical positions corresponded to the depth of minimum cross-shelf transport, providing a mechanism for retention. The observed behavioral response highlights the importance of studying ecological processes at short timescales and the abilities of pelagic organisms to control their horizontal distributions through fine-tuned diel vertical migration in response to upwelling.