Ito Garrett T.

No Thumbnail Available
Last Name
First Name
Garrett T.

Search Results

Now showing 1 - 11 of 11
  • Article
    Constructing the crust along the Galapagos Spreading Center 91.3°–95.5°W : correlation of seismic layer 2A with axial magma lens and topographic characteristics
    (American Geophysical Union, 2004-10-21) Blacic, Tanya M. ; Ito, Garrett T. ; Canales, J. Pablo ; Detrick, Robert S. ; Sinton, John M.
    Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively shallow (1.0–2.5 km below the seafloor) and narrow (∼0.5–1.5 km, cross-axis width). We also image a thin seismic layer 2A (0.24–0.42 km) that thickens away from the ridge axis by as much as 150%. West of 92.7°W, the magma lens is deeper (2.5–4.5 km) and wider (0.7–2.4 km), and layer 2A is thicker (0.36–0.66 km) and thickens off axis by <40%. The positive correlation between layer 2A thickness and magma lens depth supports the interpretation of layer 2A as the extrusive volcanic layer with thickness controlled by the pressure on the magma lens and its ability to push magma to the surface. Our findings also suggest that narrower magma lenses focus diking close the ridge axis such that lava flowing away from the ridge axis will blanket older flows and thicken the extrusive crust off axis. Flow of lava away from the ridge axis is probably promoted by the slope of the axial bathymetric high, which is largest east of 92.5°W. West of ∼94°W the “transitional” axial morphology lacks a prominent bathymetric high and layer 2A no longer thickens off axis. We detect no magma lens west of 94.7°W where a small axial valley appears. The above changes can be linked to the westward decrease in the magma and heat flux associated with the fading influence of the Galapagos hot spot on the Galapagos Spreading Center.
  • Article
    The role of elasticity in simulating long-term tectonic extension
    (Oxford University Press, 2016-01-27) Olive, Jean-Arthur ; Behn, Mark D. ; Mittelstaedt, Eric ; Ito, Garrett T. ; Klein, Benjamin Z.
    While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.
  • Thesis
    Mantle plume-midocean ridge interaction : geophysical observations and mantle dynamics
    (Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1996-09) Ito, Garrett T.
    We analyze bathymetric and gravity anomalies at five plume-ridge systems to constrain crustal and mantle density structure at these prominent oceanic features. Numerical models are then used to explore the physical mechanisms controlling plume-ridge interaction and to place theoretical constraints on the temperature anomalies, dimensions, and fluxes of the Icelandic and Galapagos plumes. In Chapter 1 we analyze bathymetric and gravity anomalies along the hotspot-influenced Galapagos Spreading Center. We find that the Galapagos plume generates along-axis bathymetric and mantle-Bouguer gravity anomalies (MBA) that extend >500 km east and west of the Galapagos Islands. The along-axis MBA becomes increasingly negative towards the plume center, reaching a minimum of ~-90 mGal near 91°W, and axial topography shallows by ~1.1 km toward the plume. These variations in MBA and bathymetry are attributed to the combined effects of crustal thickening and anomalously low mantle densities, both of which are due to a mantle temperature anomaly imposed beneath the ridge by the Galapagos plume. Passive mantle flow models predict a temperature anomaly of 50±25°C is sufficient to produce the 2-4 km excess crust required to explain the along-axis anomalies. 70-75% of the along-axis bathymetric and MBA variations are estimated to arise from the crust with the remaining 25-30% generated by the anomalously hot, thus low-density mantle. Along Cocos-plate isochrons, bathymetric and MBA variations increase with increasing isochron age, suggesting the subaxial mantle temperature anomaly was greater in the past when the plume was closer, to the ridge axis. In addition to the Galapagos plume-ridge system, in Chapter 2 we examine alongisochron bathymetric and MBA variations at four other plume-ridge systems associated with the Iceland, Azores, Easter and Tristan hotspots. We show that residual bathymetry (up to 4.7 km) and mantle-Bouguer gravity anomalies (up to -340 mGal) are greatest at on-axis plumes and decreases with increasing ridge-hotspot separation distance, until becoming insignificant at a plume-ridge separation of ~500 km. Along-isochron widths of bathymetric anomalies (up to 2700 km) decrease with increasing paleo-spreading rate, reflecting the extent to which plume material flows along-axis before being swept away by the spreading lithosphere. Scaling arguments suggest an average ridgeward plume flux of -2.2x106 km/my. Assuming that the amplitudes of the MBA and bathymetric anomalies reflect crustal thickness and mantle density variations, passive mantle flow models predict maximum subaxial mantle temperature anomalies to be 150-225°C for ridge-center plumes, which decrease as the ridges migrate away from the plumes. The dynamics of mantle flow and melting at ridge-centered plumes are investigated in Chapters 3 using three-dimensional, variable-viscosity, numerical models. Three buoyancy sources are examined: temperature, melt depletion, and melt retention. The width W to which a plume spreads along a ridge axis depends on plume volume flux Q, full spreading rate U, buoyancy number B = (QΔρg)/(48η0U2), and ambient/plume viscosity contrast ϒ according to W=2.37(Q/U)l/2(Bϒ)0.04. Thermal buoyancy is first order in controlling along-axis plume spreading while latent heat loss due to melting, and depletion and retention buoyancy forces contribute second order effects. Two end-member models of the Iceland-Mid-Atlantic Ridge (MAR) system are examined. The first endmember model has a broad plume source of radius 300 km, temperature anomaly of 75°C, and volume flux of 1.2xl07 km3/my. The second model has a narrower plume source of radius 60 km, temperature anomaly of l70°C, and flux of 2.1 x106 km3/my. The first model predicts successfully the observed crustal thickness, topographic, and MBA variations along the MAR, but the second model requires substantial along-axis melt transport in order to explain the observed along-axis variations in crustal thickness, bathymetry, and gravity. We favor this second model because it predicts a mantle P-wave velocity reduction in the plume of ~2% as consistent with recent seismic observations beneath Iceland. Finally in Chapter 4 we use three-dimensional numerical models to investigate the interaction of plumes and migrating midocean ridges. Scaling laws of axial plume spreading width Ware derived first for stationary ridges and off-axis plumes, which yield results consistent with those obtained from independent studies of Ribe [1996]. Wand the maximum plume-ridge interaction distance Xmax again scale with (Q/U)l/2 as in the case of ridge-centered plumes and increase with ϒ and buoyancy number. In the case of a migrating ridge, Xmax is reduced when a ridge migrates toward the plume due to excess drag of the faster-moving leading plate, and enhanced when a ridge migrates away from the plume due to reduced drag of the slower-moving trailing plate. Thermal erosion of the lithospheric boundary layer by the previously ridge-centered plume further enhances Wand Xmax but to a degree that is secondary to the differential migration rates of the two plates. Model predictions are compared with observed along-isochron bathymetric and MBA variations at the Galapagos plume-ridge system. The anomaly amplitudes and widths, as well as the increase in anomaly amplitude with age are predicted with a plume source temperature anomaly of 80-120°C, radius of 80-100 km, and volume flux of 4.5x106 km3/m.y. Our numerical models also predict crustal production rates of the Galapagos Islands consistent with those estimated independently using the observed island topography. Predictions of the geochemical signature of the plume along the present-day ridge suggest that mixing between the plume and ambient mantle sources is unlikely to occur in the asthenosphere or shallow crust, but most likely deeper in the mantle possibly by entrainment of ambient mantle as the plume ascends through the depleted portion of the mantle from its deep source reservoir.
  • Article
    Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction
    (American Geophysical Union, 2003-11-20) Ito, Garrett T. ; Lin, Jian ; Graham, David W.
    Hot spot–mid-ocean ridge interactions cause many of the largest structural and chemical anomalies in Earth's ocean basins. Correlated geophysical and geochemical anomalies are widely explained by mantle plumes that deliver hot and compositionally distinct material toward and along mid-ocean ridges. Compositional anomalies are seen in trace element and isotope ratios, while elevated mantle temperatures are suggested by anomalously thick crust, low-density mantle, low mantle seismic velocities, and elevated degrees and pressures of melting. Several geodynamic laboratory and modeling studies predict that the width over which plumes expand along the ridge axis increases with plume flux and excess buoyancy and decreases with plate spreading rate, plume viscosity, and plume-ridge separation. Key aspects of the theoretical predictions are supported by observations at several prominent hot spot–ridge systems. Still, many basic aspects of plume-ridge interaction remain enigmatic. Outstanding problems pertain to whether plumes flow toward and along mid-ocean ridges in narrow pipe-like channels or as broad expanding gravity currents, the origin of geochemical mixing trends observed along ridges, and how mantle plumes alter the geometry of the mid-ocean ridge plate boundary, as well as the origin of other ridge axis anomalies not obviously related to mantle plumes.
  • Preprint
    Mid-ocean ridge jumps associated with hotspot magmatism
    ( 2007-10-11) Mittelstaedt, Eric ; Ito, Garrett T. ; Behn, Mark D.
    Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galapagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galapagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galapagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 105-106 years. Simulations that incorporate ridge migration predict that after a ridge jump occurs the hotspot and ridge migrate together for time periods that increase with magma flux. Model results also suggest a mechanism for ridge reorganizations not related to hotspots such as ridge jumps in back-arc settings and ridge segment propagation along the Mid-Atlantic Ridge.
  • Article
    Morphology and segmentation of the western Galápagos Spreading Center, 90.5°–98°W : plume-ridge interaction at an intermediate spreading ridge
    (American Geophysical Union, 2003-12-13) Sinton, John M. ; Detrick, Robert S. ; Canales, J. Pablo ; Ito, Garrett T. ; Behn, Mark D.
    Complete multibeam bathymetric coverage of the western Galápagos Spreading Center (GSC) between 90.5°W and 98°W reveals the fine-scale morphology, segmentation and influence of the Galápagos hot spot on this intermediate spreading ridge. The western GSC comprises three morphologically defined provinces: A Western Province, located farthest from the Galápagos hot spot west of 95°30′W, is characterized by an axial deep, rift valley morphology with individual, overlapping, E-W striking segments separated by non-transform offsets; A Middle Province, between the propagating rift tips at 93°15′W and 95°30′W, with transitional axial morphology strikes ∼276°; An Eastern Province, closest to the Galápagos hot spot between the ∼90°50′W Galápagos Transform and 93°15′W, with an axial high morphology generally less than 1800 m deep, strikes ∼280°. At a finer scale, the axial region consists of 32 individual segments defined on the basis of smaller, mainly <2 km, offsets. These offsets mainly step left in the Western and Middle Provinces, and right in the Eastern Province. Glass compositions indicate that the GSC is segmented magmatically into 8 broad regions, with Mg # generally decreasing to the west within each region. Striking differences in bathymetric and lava fractionation patterns between the propagating rifts with tips at 93°15′W and 95°30′W reflect lower overall magma supply and larger offset distance at the latter. The structure of the Eastern Province is complicated by the intersection of a series of volcanic lineaments that appear to radiate away from a point located on the northern edge of the Galápagos platform, close to the southern limit of the Galápagos Fracture Zone. Where these lineaments intersect the GSC, the ridge axis is displaced to the south through a series of overlapping spreading centers (OSCs); abandoned OSC limbs lie even farther south. We propose that southward displacement of the axis is promoted during intermittent times of increased plume activity, when lithospheric zones of weakness become volcanically active. Following cessation of the increased plume activity, the axis straightens by decapitating southernmost OSC limbs during short-lived propagation events. This process contributes to the number of right stepping offsets in the Eastern Province.
  • Article
    Magmatic and tectonic extension at mid-ocean ridges : 2. Origin of axial morphology
    (American Geophysical Union, 2008-09-30) Ito, Garrett T. ; Behn, Mark D.
    We investigate the origin of mid-ocean ridge morphology with numerical models that successfully predict axial topographic highs, axial valleys, and the transition between the two. The models are time-dependent, simulating alternating tectonic and magmatic periods where far-field extension is accommodated by faulting and by magmatism, respectively. During tectonic phases, models predict faults to grow on either side of the ridge axis and axial height to decrease. During magmatic phases, models simulate magmatic extension by allowing the axial lithosphere to open freely in response to extension. Results show that fault size and spacing decreases with increasing time fraction spent in the magmatic phase F M . Magmatic phases also simulate the growth of topography in response to local buoyancy forces. The fundamental variable that controls the transition between axial highs and valleys is the “rise-sink ratio,” (F M /F T )(τ T /τ M ), where F M /F T is the ratio of the time spent in the magmatic and tectonic periods and τ T /τ M is the ratio of the characteristic rates for growing topography during magmatic phases (1/τ M ) and for reducing topography during tectonic phases (1/τ T ). Models predict the tallest axial highs when (F M /F T )(τ T /τ M ) ≫ 1, faulted topography without a high or valley when (F M /F T )(τ T /τ M ) ∼ 1, and the deepest median valleys when (F M /F T )(τ M /τ T ) < 1. New scaling laws explain a global negative correlation between axial topography and lithosphere thickness as measured by the depths of axial magma lenses and microearthquakes. Exceptions to this trend reveal the importance of other behaviors such as a predicted inverse relation between axial topography and spreading rate as evident along the Lau Spreading Center. Still other factors related to the frequency and spatial pervasiveness of magmatic intrusions and eruptions, as evident at the Mid-Atlantic and Juan de Fuca ridges, influence the rise-sink-ratio (F M /F T )(τ T /τ M ) and thus axial morphology.
  • Article
    Axial high topography and partial melt in the crust and mantle beneath the western Galapagos Spreading Center
    (American Geophysical Union, 2008-12-04) Blacic, Tanya M. ; Ito, Garrett T. ; Shah, Anjana K. ; Canales, J. Pablo ; Lin, Jian
    The hot spot-influenced western Galápagos Spreading Center (GSC) has an axial topographic high that reaches heights of ∼700 m relative to seafloor depth ∼25 km from the axis. We investigate the cause of the unusual size of the axial high using a model that determines the flexural response to loads resulting from the thermal and magmatic structure of the lithosphere. The thermal structure simulated is appropriate for large amounts of cooling by hydrothermal circulation, which tends to minimize the amount of partial melt needed to explain the axial topography. Nonetheless, results reveal that the large axial high near 92°W requires that either the crust below the magma lens contains >35% partial melt or that 20% melt is present in the lower crust and at least 3% in the mantle within a narrow column (<∼10 km wide) extending to depths of 45–65 km. Because melt fractions >35% in the crust are considered unreasonable, it is likely that much of the axial high region of the GSC is underlain by a narrow region of partially molten mantle of widths approaching those imaged seismically beneath the East Pacific Rise. A narrow zone of mantle upwelling and melting, driven largely by melt buoyancy, is a plausible explanation.
  • Preprint
    Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply
    ( 2015-09) Olive, Jean-Arthur L. ; Behn, Mark D. ; Ito, Garrett T. ; Buck, W. Roger ; Escartin, Javier E. ; Howell, Samuel M.
    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23–100 kyr) fluctuations in ridge magma supply caused by sea level changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than ~100 kyr. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth.
  • Article
    Magmatic and tectonic extension at mid-ocean ridges : 1. Controls on fault characteristics
    (American Geophysical Union, 2008-08-02) Behn, Mark D. ; Ito, Garrett T.
    We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
  • Article
    Magmatic and tectonic extension at the Chile Ridge : evidence for mantle controls on ridge segmentation
    (John Wiley & Sons, 2016-06-24) Howell, Samuel M. ; Ito, Garrett T. ; Behn, Mark D. ; Martinez, Fernando ; Olive, Jean-Arthur ; Escartin, Javier E.
    We use data from an extensive multibeam bathymetry survey of the Chile Ridge to study tectonomagmatic processes at the ridge axis. Specifically, we investigate how abyssal hills evolve from axial faults, how variations in magmatic extension influence morphology and faulting along the spreading axis, and how these variations correlate with ridge segmentation. The bathymetry data are used to estimate the fraction of plate separation accommodated by normal faulting, and the remaining fraction of extension, M, is attributed primarily to magmatic accretion. Results show that M ranges from 0.85 to 0.96, systematically increasing from first-order and second-order ridge segment offsets toward segment centers as the depth of ridge axis shoals relative to the flanking highs of the axial valley. Fault spacing, however, does not correlate with ridge geometry, morphology, or M along the Chile Ridge, which suggests the observed increase in tectonic strain toward segment ends is achieved through increased slip on approximately equally spaced faults. Variations in M along the segments follow variations in petrologic indicators of mantle melt fraction, both showing a preferred length scale of 50 ± 20 km that persists even along much longer ridge segments. In comparison, mean M and axial relief fail to show significant correlations with distance offsetting the segments. These two findings suggest a form of magmatic segmentation that is partially decoupled from the geometry of the plate boundary. We hypothesize this magmatic segmentation arises from cells of buoyantly upwelling mantle that influence tectonic segmentation from the mantle, up.