Elliott
Stephen M.
Elliott
Stephen M.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ThesisPhysical control of the distributions of a key Arctic copepod in the northeast Chukchi Sea(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2015-06) Elliott, Stephen M.The copepod Calanus glacialis is one of the most important zooplankton taxa in the Arctic shelf seas where it serves as a key grazer, predator, and food source. Its summer distribution and abundance have direct effects on much of the food web, from blooming phytoplankton to migrating bowhead whales. The Chukchi Sea represents a highly advective regime dominated by a barotropicly driven northward flow modulated by wind driven currents that reach the bottom boundary layer of this shallow environment. In addition, a general northward gradient of decreasing temperature and food concentration leads to geographically divergent copepod growth and development rates. The physics of this system establish the connection potential between specific regions. Unless biological factors are uniform and ideal the true connections will be an uneven subset of this physically derived connection potential. In August 2012 and 2013, C. glacialis distributions were observed over Hanna Shoal in the northeast Chukchi Sea. Here we used the Finite Volume Community Ocean Model i-State Configuration Model to advect these distributions forward and back in time to determine the source and sink regions of the transient Hanna Shoal C. glacialis population. We found that Hanna Shoal supplies diapause competent C. glacialis to both the Beaufort Slope and the Chukchi Cap, mainly receives juveniles from the broad slope between Hanna Shoal and Herald Canyon and receives second year adults from as far as the Anadyr Gulf and as close as the broad slope between Hanna Shoal and Herald Canyon. These connection potentials were not sensitive to precise times and locations of release, but were quite sensitive to depth of release. Deeper particles often traveled further than shallow particles due to strong vertical shear in the shallow Chukchi. The 2013 sink region was shifted west relative to the 2012 region and the 2013 adult source region was shifted north relative to the 2012 region.
-
ArticleInfluence of ice thickness and surface properties on light transmission through Arctic sea ice(John Wiley & Sons, 2015-09-04) Katlein, Christian ; Arndt, Stefanie ; Nicolaus, Marcel ; Perovich, Donald K. ; Jakuba, Michael V. ; Suman, Stefano ; Elliott, Stephen M. ; Whitcomb, Louis L. ; McFarland, Christopher J. ; Gerdes, Rudiger ; Boetius, Antje ; German, Christopher R.The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.
-
ArticleDecline in coral cover and flattening of the reefs around Mauritius (1998–2010)(PeerJ, 2018-11-29) Elliott, Jennifer A. ; Patterson, Mark ; Staub, Caroline ; Koonjul, Meera ; Elliott, Stephen M.Coral reefs are degrading through the impacts of multiple anthropogenic stressors. How are coral reef communities going to change and how to protect them for future generations are important conservation questions. Using coral reef data from Mauritius, we examined changes in cover in 23 benthic groups for a 13-yr period and at 15 sites. Moreover, we determined which land-based stressor out of four (human population, agriculture, tourism, rainfall) correlated the most with the observed changes in coral reef cover. Among the stony corals, Acropora corals appeared to be the most impacted, decreasing in cover at many sites. However, the non-Acropora encrusting group increased in cover at several sites. The increase in abundance of dead corals and rubble at some sites also supported the observations of stony coral decline during the study period. Additionally, the decline in stony corals appeared to be more pronounced in second half of the study period for all sites suggesting that a global factor rather than a local factor was responsible for this decline. There was little change in cover for the other benthic groups, some of which were quite rare. Human population was significantly correlated with changes in coral reef cover for 11 sites, followed by tourism and agriculture. Rainfall, a proxy for runoff, did not appear to affect coral reef cover. Overall, our results showed that there has been a decline of stony coral cover especially the ones with complex morphologies, which in turn suggest that coral reefs around Mauritius have experienced a decline in habitat complexity during the study period. Our study also suggests that humans are an important factor contributing to the demise of coral reefs around the island.