Overton
Edward B.
Overton
Edward B.
No Thumbnail Available
2 results
Search Results
Now showing
1 - 2 of 2
-
ArticleWeathering of oil spilled in the marine environment(The Oceanography Society, 2016-09) Tarr, Matthew ; Zito, Phoebe ; Overton, Edward B. ; Olson, Gregory M. ; Adhikari, Puspa L. ; Reddy, Christopher M.Crude oil is a complex mixture of many thousands of mostly hydrocarbon and nitrogen-, sulfur-, and oxygen-containing compounds with molecular weights ranging from below 70 Da to well over 2,000 Da. When this complex mixture enters the environment from spills, ruptures, blowouts, or seeps, it undergoes a continuous series of compositional changes that result from a process known as weathering. Spills of petroleum involving human activity generally result in more rapid input of crude oil or refined products (diesel, gasoline, heavy fuel oil, and diluted bitumens) to the marine system than do natural processes and urban runoffs. The primary physicochemical processes involved in weathering include evaporation, dissolution, emulsification, dispersion, sedimentation/flocculation, microbial degradation, and photooxidation.
-
ArticleBiogeochemical processes affecting the fate of discharged Deepwater Horizon gas and oil new insights and remaining gaps in our understanding(Oceanography Society, 2021-06-03) Farrington, John W. ; Overton, Edward B. ; Passow, UtaResearch funded under the Gulf of Mexico Research Initiative provided new insights into the biogeochemical processes influencing the fate of petroleum chemicals entering the Gulf of Mexico from the Deepwater Horizon (DWH) accident. This overview of that work is based on detailed recent reviews of aspects of the biogeochemistry as well as on activities supported by the US Natural Resource Damage Assessment. The main topics presented here are distribution of hydrocarbons in the water column; the role of photo-oxidation of petroleum compounds at the air-sea interface; the role of particulates in the fate of the DWH hydrocarbons, especially marine oil snow (MOS) and marine oil snow sedimentation and flocculent accumulation (MOSSFA); oil deposition and accumulation in sediments; and fate of oil on beaches and in marshes. A brief discussion of bioaccumulation is also included. Microbial degradation is addressed in a separate paper in this special issue of Oceanography. Important future research recommendations include: conduct a more robust assessment of the mass balance of various chemical groupings and even individual chemicals during specific time intervals; seek a better understanding of the roles of photo-oxidation products, MOS, and MOSSFA and their relationships to microbial degradation; and determine the fates of the insoluble highly degraded and viscous oil residues in the environment.