Moyer Craig L.

No Thumbnail Available
Last Name
First Name
Craig L.

Search Results

Now showing 1 - 5 of 5
  • Article
    Structure of Lo'ihi Seamount, Hawai'i and lava flow morphology from high-resolution mapping.
    (Frontiers Media, 2019-03-26) Clague, David A. ; Paduan, Jennifer B. ; Caress, David W. ; Moyer, Craig L. ; Glazer, Brian T. ; Yoerger, Dana R.
    The early development and growth of oceanic volcanoes that eventually grow to become ocean islands are poorly known. In Hawai‘i, the submarine Lō‘ihi Seamount provides the opportunity to determine the structure and growth of such a nascent oceanic island. High-resolution bathymetric data were collected using AUV Sentry at the summit and at two hydrothermal vent fields on the deep south rift of Lō‘ihi Seamount. The summit records a nested series of caldera and pit crater collapse events, uplift of one resurgent block, and eruptions that formed at least five low lava shields that shaped the summit. The earliest and largest caldera, formed ∼5900 years ago, bounds almost the entire summit plateau. The resurgent block was uplifted slightly more than 100 m and has a tilted surface with a dip of about 6.5° toward the SE. The resurgent block was then modified by collapse of a pit crater centered in the block that formed West Pit. The shallowest point on Lō‘ihi’s summit is 986 m deep and is located on the northwest edge of the resurgent block. Several collapse events culminated in formation of East Pit, and the final collapse formed Pele’s Pit in 1996. The nine mapped collapse and resurgent structures indicate the presence of a shallow crustal magma chamber, ranging from depths of ∼1 km to perhaps 2.5 km below the summit, and demonstrate that shallow sub-caldera magma reservoirs exist during the late pre-shield stage. On the deep south rift zone are young medium- to high-flux lava flows that likely erupted in 1996 and drained the shallow crustal magma chamber to trigger the collapse that formed Pele’s Pit. These low hummocky and channelized flows had molten cores and now host the FeMO hydrothermal field. The Shinkai Deep hydrothermal site is located among steep-sided hummocky flows that formed during low-flux eruptions. The Shinkai Ridge is most likely a coherent landslide block that originated on the east flank of Lō‘ihi.
  • Dataset
    Metadata and accessions for comparative single-cell genomics of Chloroflexi from the Okinawa Trough deep subsurface biosphere from DV/Chikyu OIDP stations, Sept-Oct. 2010 (Subsurface FeOBs project)
    (Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact:, 2021-03-03) Moyer, Craig L. ; Fullerton, Heather
    Metadata and accessions for comparative single-cell genomics of Chloroflexi from the Okinawa Trough deep subsurface biosphere from DV/Chikyu OIDP stations, Sept-Oct. 2010; with links to NCBI and IMG repositories. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at:
  • Article
    A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities
    (Public Library of Science, 2007-08-01) Emerson, David ; Rentz, Jeremy A. ; Lilburn, Timothy G. ; Davis, Richard E. ; Aldrich, Henry ; Chan, Clara S. ; Moyer, Craig L.
    For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = 1ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first cultured representative of a new candidatus class of the Proteobacteria that is widely distributed in deep-sea environments, Candidatus ζ (zeta)-Proteobacteria cl. nov.
  • Preprint
    Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii
    ( 2016-10-24) Sylvan, Jason B. ; Wankel, Scott D. ; LaRowe, Douglas E. ; Charoenpong, Chawalit N. ; Huber, Julie A. ; Moyer, Craig L. ; Edwards, Katrina J.
    The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3-+NO2-, while NO2- was not correlated to NO3-+NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (d15N and d18O) was elevated with respect to background seawater, with d18O values exhibiting larger changes than corresponding d15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. d15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.
  • Article
    Ultra-diffuse hydrothermal venting supports Fe-oxidizing bacteria and massive umber deposition at 5000 m off Hawaii
    (Nature Publishing Group, 2011-05-05) Edwards, Katrina J. ; Glazer, Brian T. ; Rouxel, Olivier J. ; Bach, Wolfgang ; Emerson, David ; Toner, Brandy M. ; Chan, Clara S. ; Tebo, Bradley M. ; Staudigel, Hubert ; Moyer, Craig L.
    A novel hydrothermal field has been discovered at the base of Lōihi Seamount, Hawaii, at 5000 mbsl. Geochemical analyses demonstrate that ‘FeMO Deep’, while only 0.2 °C above ambient seawater temperature, derives from a distal, ultra-diffuse hydrothermal source. FeMO Deep is expressed as regional seafloor seepage of gelatinous iron- and silica-rich deposits, pooling between and over basalt pillows, in places over a meter thick. The system is capped by mm to cm thick hydrothermally derived iron-oxyhydroxide- and manganese-oxide-layered crusts. We use molecular analyses (16S rDNA-based) of extant communities combined with fluorescent in situ hybridizations to demonstrate that FeMO Deep deposits contain living iron-oxidizing Zetaproteobacteria related to the recently isolated strain Mariprofundus ferroxydans. Bioenergetic calculations, based on in-situ electrochemical measurements and cell counts, indicate that reactions between iron and oxygen are important in supporting chemosynthesis in the mats, which we infer forms a trophic base of the mat ecosystem. We suggest that the biogenic FeMO Deep hydrothermal deposit represents a modern analog for one class of geological iron deposits known as ‘umbers’ (for example, Troodos ophilolites, Cyprus) because of striking similarities in size, setting and internal structures.