Büntgen Ulf

No Thumbnail Available
Last Name
Büntgen
First Name
Ulf
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    The Intcal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)
    (Cambridge University Press, 2020-08-12) Reimer, Paula J. ; Austin, William E. N. ; Bard, Edouard ; Bayliss, Alex ; Blackwell, Paul G. ; Bronk Ramsey, Christopher ; Butzin, Martin ; Cheng, Hai ; Edwards, R. Lawrence ; Friedrich, Michael ; Grootes, Pieter M. ; Guilderson, Thomas P. ; Hajdas, Irka ; Heaton, Timothy J. ; Hogg, Alan G. ; Hughen, Konrad A. ; Kromer, Bernd ; Manning, Sturt W. ; Muscheler, Raimund ; Palmer, Jonathan G. ; Pearson, Charlotte ; van der Plicht, Johannes ; Reimer, Ron W. ; Richards, David A. ; Scott, E. Marian ; Southon, John R. ; Turney, Christian S. M. ; Wacker, Lukas ; Adolphi, Florian ; Büntgen, Ulf ; Capano, Manuela ; Fahrni, Simon M. ; Fogtmann-Schulz, Alexandra ; Friedrich, Ronny ; Köhler, Peter ; Kudsk, Sabrina ; Miyake, Fusa ; Olsen, Jesper ; Reinig, Frederick ; Sakamoto, Minoru ; Sookdeo, Adam ; Talamo, Sahra
    Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
  • Preprint
    Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri
    ( 2016-10) Hogg, Alan G. ; Southon, John R. ; Turney, Christian S. M. ; Palmer, Jonathan G. ; Bronk Ramsey, Christopher ; Fenwick, Pavla ; Boswijk, Gretel ; Büntgen, Ulf ; Friedrich, Michael ; Helle, Gerhard ; Hughen, Konrad A. ; Jones, Richard ; Kromer, Bernd ; Noronha, Alexandra ; Reinig, Frederick ; Reynard, Linda ; Staff, Richard ; Wacker, Lukas
    The Last Glacial-Interglacial Transition (LGIT; 15,000-11,000 cal BP) was characterized by complex spatiotemporal patterns of climate change, with numerous studies requiring accurate chronological control to decipher leads from lags in global paleoclimatic, -environmental and archaeological records. However, close scrutiny of the few available tree-ring chronologies and 14C-dated sequences composing the IntCal13 radiocarbon calibration curve, indicates significant weakness in 14C calibration across key periods of the LGIT. Here, we present a decadally-resolved atmospheric 14C record derived from New Zealand kauri spanning the Lateglacial from ~13,100 - 11,365 cal BP. Two floating kauri 14C time series, curve-matched to IntCal13, serve as a radiocarbon backbone through the Younger Dryas. The floating Northern Hemisphere (NH) 14C datasets derived from the YD-B and Central European Lateglacial Master tree-ring series are matched against the new kauri data, forming a robust NH 14C time series to ~14,200 cal BP. Our results show that IntCal13 is questionable from ~12,200 - 11,900 cal BP and the ~10,400 BP 14C plateau is approximately five decades too short. The new kauri record and re-positioned NH pine 14C series offer a refinement of the international 14C calibration curves IntCal13 and SHCal13, providing increased confidence in the correlation of global paleorecords.