Belani Abhimanyu

No Thumbnail Available
Last Name
Belani
First Name
Abhimanyu
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Autonomous water sampler for oil spill response
    (MDPI, 2022-04-11) Gomez-Ibanez, Daniel ; Kukulya, Amy L. ; Belani, Abhimanyu ; Conmy, Robyn N. ; Sundaravadivelu, Devi ; DiPinto, Lisa
    A newly developed water sampling system enables autonomous detection and sampling of underwater oil plumes. The Midwater Oil Sampler collects multiple 1-L samples of seawater when preset criteria are met. The sampler has a hydrocarbon-free sample path and can be configured with several modules of six glass sample bottles. In August 2019, the sampler was deployed on an autonomous underwater vehicle and captured targeted water samples in natural oil seeps offshore Santa Barbara, CA, USA.
  • Article
    Improved biodiversity detection using a large-volume environmental DNA sampler with in situ filtration and implications for marine eDNA sampling strategies
    (Elsevier, 2022-09-22) Govindarajan, Annette F. ; McCartin, Luke ; Adams, Allan ; Allan, Elizabeth ; Belani, Abhimanyu ; Francolini, Rene ; Fujii, Justin ; Gomez-Ibañez, Daniel ; Kukulya, Amy ; Marin, Fredrick ; Tradd, Kaitlyn ; Yoerger, Dana R. ; McDermott, Jill M. ; Herrera, Santiago
    Metabarcoding analysis of environmental DNA samples is a promising new tool for marine biodiversity and conservation. Typically, seawater samples are obtained using Niskin bottles and filtered to collect eDNA. However, standard sample volumes are small relative to the scale of the environment, conventional collection strategies are limited, and the filtration process is time consuming. To overcome these limitations, we developed a new large – volume eDNA sampler with in situ filtration, capable of taking up to 12 samples per deployment. We conducted three deployments of our sampler on the robotic vehicle Mesobot in the Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico and collected samples from 20 to 400 m depth. We compared the large volume (∼40–60 L) samples collected by Mesobot with small volume (∼2 L) samples collected using the conventional CTD rosette – mounted Niskin bottle approach. We sequenced the V9 region of 18S rRNA, which detects a broad range of invertebrate taxa, and found that while both methods detected biodiversity changes associated with depth, our large volume samples detected approximately 66% more taxa than the CTD small volume samples. We found that the fraction of the eDNA signal originating from metazoans relative to the total eDNA signal decreased with sampling depth, indicating that larger volume samples may be especially important for detecting metazoans in mesopelagic and deep ocean environments. We also noted substantial variability in biological replicates from both the large volume Mesobot and small volume CTD sample sets. Both of the sample sets also identified taxa that the other did not – although the number of unique taxa associated with the Mesobot samples was almost four times larger than those from the CTD samples. Large volume eDNA sampling with in situ filtration, particularly when coupled with robotic platforms, has great potential for marine biodiversity surveys, and we discuss practical methodological and sampling considerations for future applications.•A large-volume eDNA sampler was developed and deployed on the midwater robot Mesobot.•Compared to conventional small-volume samples, the sampler detected more metazoan taxa.•Both sampling approaches detected community changes with depth on the scale of 10's of meters.•The metazoan eDNA signal declined with depth.•Large volume sampling may be especially important in the mesopelagic and deep sea.