Rypina Irina I.

No Thumbnail Available
Last Name
First Name
Irina I.

Search Results

Now showing 1 - 2 of 2
  • Article
    Transport in an idealized three-gyre system with application to the Adriatic Sea
    (American Meteorological Society, 2009-03) Rypina, Irina I. ; Brown, Michael G. ; Kocak, Huseyin
    Motivated by observations of surface drifters in the Adriatic Sea, transport in a three-gyre system is studied with the aid of dynamical systems techniques. Particular attention is paid to the issue of intergyre transport. The velocity field is assumed to be two-dimensional and incompressible and composed of a steady three-gyre background flow on which a time-dependent perturbation is superimposed. Two systems of this type are considered: 1) an observationally motivated, analytically prescribed model consisting of a steady background on which a multiperiodic time-dependent perturbation is superimposed, and 2) an observationally based model of the Adriatic Sea consisting of the mean surface circulation derived from surface drifter trajectories on which a time-dependent altimetry-based perturbation velocity field is superimposed. It is shown that for a small perturbation to the steady three-gyre background, two of the gyres exchange no fluid with the third gyre. When the perturbation strength exceeds a certain threshold, transport between all three gyres occurs. This behavior is described theoretically, illustrated using the analytic model and shown to be consistent with the observationally based model of the Adriatic. The relevance of the work presented to more complicated multiple-gyre problems is discussed.
  • Article
    Zonal jets as transport barriers in planetary atmospheres
    (American Meteorological Society, 2008-10) Beron-Vera, F. J. ; Brown, Michael G. ; Olascoaga, M. J. ; Rypina, Irina I. ; Kocak, Huseyin ; Udovydchenkov, Ilya A.
    The connection between transport barriers and potential vorticity (PV) barriers in PV-conserving flows is investigated with a focus on zonal jets in planetary atmospheres. A perturbed PV staircase model is used to illustrate important concepts. This flow consists of a sequence of narrow eastward and broad westward zonal jets with a staircase PV structure; the PV steps are at the latitudes of the cores of the eastward jets. Numerically simulated solutions to the quasigeostrophic PV conservation equation in a perturbed PV staircase flow are presented. These simulations reveal that both eastward and westward zonal jets serve as robust meridional transport barriers. The surprise is that westward jets, across which the background PV gradient vanishes, serve as robust transport barriers. A theoretical explanation of the underlying barrier mechanism is provided. It is argued that transport barriers near the cores of westward zonal jets, across which the background PV gradient is small, are found in Jupiter’s midlatitude weather layer and in the earth’s summer hemisphere subtropical stratosphere.