McGehee Duncan E.

No Thumbnail Available
Last Name
McGehee
First Name
Duncan E.
ORCID

Search Results

Now showing 1 - 2 of 2
  • Article
    Effect of orientation on broadband acoustic scattering of Antarctic krill Euphausia superba : implications for inverting zooplankton spectral
    (Acoustical Society of America, 1998-10) Martin Traykovski, Linda V. ; O'Driscoll, R. L. ; McGehee, Duncan E.
    Acoustic scattering experiments involving simultaneous acquisition of broadband echoes and video footage from several Antarctic krill were carried out to determine the effect of animal orientation on echo spectral structure. A novel video analysis technique, applied to extract krill angle of orientation corresponding to each insonification, revealed that echo spectra from krill near broadside incidence relative to the incident acoustic wave exhibited widely spaced, deep nulls, whereas off-broadside echo spectra had a more erratic structure, with several closely spaced nulls of variable depth. The pattern of changes in echo spectra with orientation for the experimentally measured acoustic returns was very similar to theoretically predicted patterns based on a distorted wave Born approximation (DWBA) model. Information contained in the broadband echo spectra of the krill was exploited to invert the acoustic returns for angle of orientation by applying a newly developed Covariance Mean Variance Classification (CMVC) approach, using generic and animal-specific theoretical and empirical model spaces. The animal-specific empirical model space was best able to invert for angle of orientation. The CMVC inversion technique can be implemented using a generic empirical model space to determine angle of orientation based on broadband echoes from individual zooplankton in the field.
  • Article
    Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton
    (Acoustical Society of America, 2002-03) Lavery, Andone C. ; Stanton, Timothy K. ; McGehee, Duncan E. ; Chu, Dezhang
    Scattering models that correctly incorporate organism size and shape are a critical component for the remote detection and classification of many marine organisms. In this work, an acoustic scattering model has been developed for fluid-like zooplankton that is based on the distorted wave Born approximation (DWBA) and that makes use of high-resolution three-dimensional measurements of the animal's outer boundary shape. High-resolution computerized tomography (CT) was used to determine the three-dimensional digitizations of animal shape. This study focuses on developing the methodology for incorporating high-resolution CT scans into a scattering model that is generally valid for any body with fluid-like material properties. The model predictions are compared to controlled laboratory measurements of the acoustic backscattering from live individual decapod shrimp. The frequency range used was 50 kHz to 1 MHz and the angular characteristics of the backscattering were investigated with up to a 1° angular resolution. The practical conditions under which it is necessary to make use of high-resolution digitizations of shape are assessed.