McCauley Linda A. R.

No Thumbnail Available
Last Name
McCauley
First Name
Linda A. R.
ORCID

Search Results

Now showing 1 - 4 of 4
Thumbnail Image
Preprint

Development of microsatellite markers in the toxic dinoflagellate Alexandrium minutum (Dinophyceae)

2006-01-22 , Nagai, Satoshi , McCauley, Linda A. R. , Yasuda, N. , Erdner, Deana L. , Kulis, David M. , Matsuyama, Y. , Itakura, S. , Anderson, Donald M.

Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.

Thumbnail Image
Article

Diversity and dynamics of a widespread bloom of the toxic dinoflagellate Alexandrium fundyense

2011-07-29 , Erdner, Deana L. , Richlen, Mindy L. , McCauley, Linda A. R. , Anderson, Donald M.

Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.

Thumbnail Image
Preprint

Using global genome approaches to address problems in cod mariculture

2005-10-26 , Goetz, Frederick W. , McCauley, Linda A. R. , Goetz, Giles W. , Norberg, Birgitta

A number of techniques including expressed sequence tag (EST) analysis, serial analysis of gene expression, and microarrays are available to study the global expression and regulation of genes. Many of these techniques are being used for intensively reared fish such as trout, salmon and catfish to study genes involved in growth, reproduction and health. In contrast, relatively little is known about the composition and regulation of transcriptomes in gadids. However, several bottlenecks in cod mariculture might benefit from the discovery and analysis of genes involved in reproduction, growth and disease. As a result, we have begun EST analysis of genes in the cod ovary. Complimentary DNA (cDNA) libraries of cod ovaries taken from females at oocyte final maturation and ovulation have been constructed, and 1,361 ESTs have been analyzed. As expected, several oocyte-related genes were observed including various zona pellucida egg membrane proteins. However, pivotal cell cycle regulators such as cyclins, genes involved in the regulation of apoptosis such as the Bcl-2-related ovarian killer protein, and hormone receptor components were also observed. Finally, a cDNA for a potential novel cod antifreeze protein was observed 12 times, suggesting the existence of a cod egg-specific antifreeze protein.

Thumbnail Image
Article

Extensive genetic diversity and rapid population differentiation during blooms of Alexandrium fundyense (Dinophyceae) in an isolated salt pond on Cape Cod, MA, USA

2012-09-13 , Richlen, Mindy L. , Erdner, Deana L. , McCauley, Linda A. R. , Libera, Katie , Anderson, Donald M.

In Massachusetts, paralytic shellfish poisoning (PSP) is annually recurrent along the coastline, including within several small embayments on Cape Cod. One such system, the Nauset Marsh System (NMS), supports extensive marshes and a thriving shellfishing industry. Over the last decade, PSP in the NMS has grown significantly worse; however, the origins and dynamics of the toxic Alexandrium fundyense (Balech) populations that bloom within the NMS are not well known. This study examined a collection of 412 strains isolated from the NMS and the Gulf of Maine (GOM) in 2006–2007 to investigate the genetic characteristics of localized blooms and assess connectivity with coastal populations. Comparisons of genetic differentiation showed that A. fundyense blooms in the NMS exhibited extensive clonal diversity and were genetically distinct from populations in the GOM. In both project years, genetic differentiation was observed among temporal samples collected from the NMS, sometimes occurring on the order of approximately 7 days. The underlying reasons for temporal differentiation are unknown, but may be due, in part, to life-cycle characteristics unique to the populations in shallow embayments, or possibly driven by selection from parasitism and zooplankton grazing; these results highlight the need to investigate the role of selective forces in the genetic dynamics of bloom populations. The small geographic scale and limited connectivity of NMS salt ponds provide a novel system for investigating regulators of blooms, as well as the influence of selective forces on population structure, all of which are otherwise difficult or impossible to study in the adjacent open-coastal waters or within larger estuaries.