Mills Katherine E.

No Thumbnail Available
Last Name
First Name
Katherine E.

Search Results

Now showing 1 - 2 of 2
  • Article
    Forecasting the seasonal timing of Maine's lobster fishery
    (Frontiers Media, 2017-11-02) Mills, Katherine E. ; Pershing, Andrew J. ; Hernández, Christina M.
    The fishery for American lobster is currently the highest-valued commercial fishery in the United States, worth over US$620 million in dockside value in 2015. During a marine heat wave in 2012, the fishery was disrupted by the early warming of spring ocean temperatures and subsequent influx of lobster landings. This situation resulted in a price collapse, as the supply chain was not prepared for the early and abundant landings of lobsters. Motivated by this series of events, we have developed a forecast of when the Maine (USA) lobster fishery will shift into its high volume summer landings period. The forecast uses a regression approach to relate spring ocean temperatures derived from four NERACOOS buoys along the coast of Maine to the start day of the high landings period of the fishery. Tested against conditions in past years, the forecast is able to predict the start day to within 1 week of the actual start, and the forecast can be issued 3–4 months prior to the onset of the high-landings period, providing valuable lead-time for the fishery and its associated supply chain to prepare for the upcoming season. Forecast results are conveyed in a probabilistic manner and are updated weekly over a 6-week forecasting period so that users can assess the certainty and consistency of the forecast and factor the uncertainty into their use of the information in a given year. By focusing on the timing of events, this type of seasonal forecast provides climate-relevant information to users at time scales that are meaningful for operational decisions. As climate change alters seasonal phenology and reduces the reliability of past experience as a guide for future expectations, this type of forecast can enable fishing industry participants to better adjust to and prepare for operating in the context of climate change.
  • Article
    It's about time: a synthesis of changing phenology in the Gulf of Maine ecosystem
    (Wiley, 2019-04-22) Staudinger, Michelle D. ; Mills, Katherine E. ; Stamieszkin, Karen ; Record, Nicholas R. ; Hudak, Christine A. ; Allyn, Andrew ; Diamond, Antony ; Friedland, Kevin D. ; Golet, Walt ; Henderson, Meghan Elisabeth ; Hernandez, Christina M. ; Huntington, Thomas G. ; Ji, Rubao ; Johnson, Catherine L. ; Johnson, David Samuel ; Jordaan, Adrian ; Kocik, John ; Li, Yun ; Liebman, Matthew ; Nichols, Owen C. ; Pendleton, Daniel ; Richards, R. Anne ; Robben, Thomas ; Thomas, Andrew C. ; Walsh, Harvey J. ; Yakola, Keenan
    The timing of recurring biological and seasonal environmental events is changing on a global scale relative to temperature and other climate drivers. This study considers the Gulf of Maine ecosystem, a region of high social and ecological importance in the Northwest Atlantic Ocean and synthesizes current knowledge of (a) key seasonal processes, patterns, and events; (b) direct evidence for shifts in timing; (c) implications of phenological responses for linked ecological‐human systems; and (d) potential phenology‐focused adaptation strategies and actions. Twenty studies demonstrated shifts in timing of regional marine organisms and seasonal environmental events. The most common response was earlier timing, observed in spring onset, spring and winter hydrology, zooplankton abundance, occurrence of several larval fishes, and diadromous fish migrations. Later timing was documented for fall onset, reproduction and fledging in Atlantic puffins, spring and fall phytoplankton blooms, and occurrence of additional larval fishes. Changes in event duration generally increased and were detected in zooplankton peak abundance, early life history periods of macro‐invertebrates, and lobster fishery landings. Reduced duration was observed in winter–spring ice‐affected stream flows. Two studies projected phenological changes, both finding diapause duration would decrease in zooplankton under future climate scenarios. Phenological responses were species‐specific and varied depending on the environmental driver, spatial, and temporal scales evaluated. Overall, a wide range of baseline phenology and relevant modeling studies exist, yet surprisingly few document long‐term shifts. Results reveal a need for increased emphasis on phenological shifts in the Gulf of Maine and identify opportunities for future research and consideration of phenological changes in adaptation efforts.