Lalonde Stefan V.

No Thumbnail Available
Last Name
First Name
Stefan V.

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Trace elements at the intersection of marine biological and geochemical evolution
    ( 2016-10) Robbins, Leslie J. ; Lalonde, Stefan V. ; Planavsky, Noah J. ; Partin, Camille A. ; Reinhard, Christopher T. ; Kendall, Brian ; Scott, Clint ; Hardisty, Dalton S. ; Gill, Benjamin C. ; Alessi, Daniel S. ; Dupont, Christopher L. ; Saito, Mak A. ; Crowe, Sean A. ; Poulton, Simon W. ; Bekker, Andrey ; Lyons, Timothy W. ; Konhauser, Kurt O.
    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages have yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth’s ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.
  • Preprint
    Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history
    ( 2017-06-25) Konhauser, Kurt O. ; Planavsky, Noah J. ; Hardisty, Dalton S. ; Robbins, Leslie J. ; Warchola, Tyler J. ; Haugaard, Rasmus ; Lalonde, Stefan V. ; Partin, Camille A. ; Oonk, Paul B. H. ; Tsikos, Harilaos ; Lyons, Timothy W. ; Bekker, Andrey ; Johnson, Clark M.
    Iron formations (IF) represent an iron-rich rock type that typifies many Archaean and Proterozoic supracrustal successions and are chemical archives of Precambrian seawater chemistry and postdepositional iron cycling. Given that IF accumulated on the seafloor for over two billion years of Earth’s early history, changes in their chemical, mineralogical, and isotopic compositions offer a unique glimpse into environmental changes that took place on the evolving Earth. Perhaps one of the most significant events was the transition from an anoxic planet to one where oxygen was persistently present within the marine water column and atmosphere. Linked to this progressive global oxygenation was the evolution of aerobic microbial metabolisms that fundamentally influenced continental weathering processes, the supply of nutrients to the oceans, and, ultimately, diversification of the biosphere and complex life forms. Many of the key recent innovations in understanding IF genesis are linked to geobiology, since biologically assisted Fe(II) oxidation, either directly through photoferrotrophy, or indirectly through oxygenic photosynthesis, provides a process for IF deposition from mineral precursors. The abundance and isotope composition of Fe(II)-bearing minerals in IF additionally suggests microbial Fe(III) reduction, a metabolism that is deeply rooted in the Archaea and Bacteria. Linkages among geobiology, hydrothermal systems, and deposition of IF have been traditionally overlooked, but now form a coherent model for this unique rock type. This paper reviews the defining features of IF and their distribution through the Neoarchaean and Palaeoproterozoic. This paper is an update of previous reviews by Bekker et al. (2010, 2014) that will improve the quantitative framework we use to interpret IF deposition. In this work, we also discuss how recent discoveries have provided new insights into the processes underpinning the global rise in atmospheric oxygen and the geochemical evolution of the oceans.
  • Preprint
    Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution
    ( 2012-12) Robbins, Leslie J. ; Lalonde, Stefan V. ; Saito, Mak A. ; Planavsky, Noah J. ; Mloszewska, A. M. ; Pecoits, E. ; Scott, C. ; Dupont, C. L. ; Kappler, Andreas A. ; Konhauser, Kurt O.
    Here we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models used to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario, the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case zinc’s geochemical and biological evolution may be decoupled, and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints 50 on potential couplings between the trajectory of biological and marine geochemical coevolution.