Werner William J.

No Thumbnail Available
Last Name
Werner
First Name
William J.
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Soil warming accelerates biogeochemical silica cycling in a temperate forest.
    (Frontiers Media, 2019-09-11) Gewirtzman, Jonathan ; Tang, Jianwu ; Melillo, Jerry M. ; Werner, William J. ; Kurtz, Andrew C. ; Fulweiler, Robinson W. ; Carey, Joanna C.
    Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.
  • Preprint
    Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
    ( 2017-03) Melillo, Jerry M. ; Frey, Serita D. ; DeAngelis, Kristen M. ; Werner, William J. ; Bernard, Michael J. ; Bowles, F. P. ; Pold, Grace ; Grandy, A. Stuart
    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.
  • Article
    Decreased soil organic matter in a long-term soil warming experiment lowers soil water holding capacity and affects soil thermal and hydrological buffering
    (American Geophysical Union, 2020-04-04) Werner, William J. ; Sanderman, Jonathan ; Melillo, Jerry M.
    Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3 H2O cm−3 soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1 for O horizon soil, −0.010 g SOM g−1 for A horizon soil) and WHC (−0.82 g H2O g−1 for O horizon soil, −0.18 g H2O g−1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.