Fuchs
Heidi L.
Fuchs
Heidi L.
No Thumbnail Available
Search Results
Now showing
1 - 3 of 3
-
ArticleLarval responses to turbulence and temperature in a tidal inlet: Habitat selection by dispersing gastropods?(Sears Foundation for Marine Research, 2010-06) Fuchs, Heidi L. ; Solow, Andrew R. ; Mullineaux, Lauren S.Marine larval dispersal is affected by hydrodynamic transport and larval behavior, but little is known about how behavior affects large-scale patterns of dispersal and recruitment. Intertidal habitats are characterized by strong and variable turbulence relative to shelf and pelagic waters, so larval responses to turbulence may affect both dispersal and habitat selection. This study combined observations and theoretical approaches to model gastropod larval responses to multiple physical variables in a well-mixed tidal inlet. Physical measurements and larvae were collected in July 2004 in Barnstable Harbor, Massachusetts (USA). Physical measurements were incorporated in an advection-diffusion model where larval vertical velocity is a function of turbulence dissipation rate, temperature, and the temperature gradient. Modeled larval distributions were fitted to observed concentration profiles by maximum likelihood to estimate larval behavioral velocity (swimming or sinking) as a function of environmental conditions. These quantitative behavior estimates were used to test hypotheses about behavioral differences among groups and to assess the relative impact of different cues on overall larval behavior. Larvae of five common gastropod species from different coastal habitats reacted most strongly to turbulence but had genus-specific responses to environmental cues. Larvae of a species from tidal inlets (the mud snail Nassarius obsoletus) had near-zero velocities under calmer conditions and sank in strong turbulence. In contrast, larvae from exposed beach habitats (Crepidula spp. and Anachis spp.) sank in weak turbulence and swam up in strong turbulence, with additional responses to temperature and temperature gradient. Larval responses also differed between small and large size classes and between flood and ebb tides. Behavior of mud snail larvae would contribute to retention inside the inlet and near adult habitats, whereas behavior of beach snail larvae would contribute to rapid export from muddy inlets lacking suitable adult habitats.
-
DatasetProcessed data from Particle Imaging Velocimetry (PIV) observations of Tritia trivittata and Tritia obsoleta behavior in various flow tanks(Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu, 2018-07-13) Fuchs, Heidi L. ; Gerbi, Gregory P. ; Hunter, Elias J. ; Christman, Adam J.Dispersing marine larvae can alter their physical transport by swimming vertically or sinking in response to environmental signals. However, it remains unknown whether any signals could enable larvae to navigate over large scales. We tested whether flow-induced larval behaviors vary with adults' physical environments using congeneric snail larvae from the wavy continental shelf (Tritia trivittata) and from turbulent inlets (Tritia obsoleta). This dataset includes observations of larvae in turbulence, in rotating flows dominated by vorticity or strain rates, and in rectilinear wave oscillations. Larval and water motion were observed using near-infrared particle image velocimetry (IR PIV), and analyses identified threshold signals causing larvae to change their direction or magnitude of propulsive force. The two species reacted similarly to turbulence but differently to waves, and their transport patterns would diverge in wavy, offshore regions. Wave-induced behaviors provide evidence that larvae may detect waves as both motions and sounds useful in navigation. For a complete list of measurements, refer to the supplemental document 'Field_names.pdf', and a full dataset description is included in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: http://www.bco-dmo.org/dataset/739790
-
ThesisBiophysical coupling between turbulence, veliger behavior, and larval supply(Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 2005-09) Fuchs, Heidi L.The goals of this thesis were to quantify the behavior of gastropod larvae (mud snails Ryanassa obsoleta) in turbulence, and to investigate how that behavior affects larval supply in a turbulent coastal inlet. Gastropod larvae retract their velums and sink rapidly in strong turbulence. Turbulence-induced sinking would be an adaptive behavior if it resulted in increased larval supply and enhanced settlement in suitable coastal habitats. In laboratory experiments, mud snail larvae were found to have three behavioral modes: swimming, hovering, and sinking. The proportion of sinking larvae increased exponentially with the turbulence dissipation rate over a range comparable to turbulence in a tidal inlet, and the mean larval vertical velocity shifted from upward to downward in turbulence resembling energetic nearshore areas. The larval response to turbulence was incorporated in a vertical advection-diffusion model to characterize the effects of this behavior on larval supply and settlement in a tidal channel. Compared to passive larvae, larvae that sink in turbulence have higher near-bed concentrations throughout flood and ebb tides. This high larval supply enables behaving larvae to settle more successfully than passive larvae in strong currents characteristic of turbulent tidal inlets. A study was conducted at Barnstable Harbor, MA to estimate the responses of larvae to turbulence in the field. Gastropod larvae from different coastal environments had genus-specific responses to turbulence, suggesting that larvae use turbulence for large-scale habitat selection. On ebb tides, mud snail larvae had a similar response to turbulence as in the laboratory, with greater sinking velocities in strong turbulence. Behavior estimates differed for flood and ebb tides, indicating that additional physical cues influence behavior. Turbulence-induced sinking behavior would enhance retention and promote settlement of mud snail larvae in habitats like Barnstable Harbor.