Lu Xiankai

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Nutrient limitation of woody debris decomposition in a tropical forest : contrasting effects of N and P addition
    ( 2015-04) Chen, Yao ; Sayer, Emma J. ; Li, Zhian ; Mo, Qifeng ; Li, Yingwen ; Ding, Yongzhen ; Wang, Jun ; Lu, Xiankai ; Tang, Jianwu ; Wang, Faming
    Tropical forests represent a major terrestrial store of carbon (C), a large proportion of which is contained in the soil and decaying organic matter. Woody debris plays a key role in forest C dynamics because it contains a sizeable proportion of total forest C. Understanding the factors controlling the decomposition of organic matter in general, and woody debris in particular, is hence critical to assessing changes in tropical C storage. We conducted a factorial fertilization experiment in a tropical forest in South China to investigate the influence of nitrogen (N) and phosphorus (P) availability on woody debris decomposition using branch segments (5 cm diameter) of four species (Acacia auriculaeformis, Aphanamixis polystachya, Schefflera octophylla, and Carallia brachiata) in plots fertilized with +N, +P, or +NP, and controls. Fertilization with +P and +NP increased decomposition rates by 5–53%, and the magnitude was species specific. Contrary to expectations, we observed no negative effect of +N addition on decay rates or mass loss of woody debris in any of the four study species. Decomposition rates of woody debris were higher in species with lower C : P ratios regardless of treatment. We observed significant accumulation of P in the woody debris of all species in plots fertilized with +P and +NP during the early stages of decomposition. N release from woody debris of Acacia (N-fixing) was greater in the +P plots towards the end of the study, whereas fertilization with +N had no impact on the patterns of nutrient release during decomposition. Synthesis: Our results indicate that decomposition of woody debris is primarily constrained by P availability in this tropical forest. However, contrary to expectations, +N addition did not exacerbate P limitation. It is conceivable that decay rates of woody debris in tropical forests can be predicted by C : P or lignin : P ratios, but additional work with more tree species is needed to determine whether the patterns we observed are more generally applicable.
  • Article
    Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest
    (Nature Publishing Group, 2015-09-29) Mo, Qifeng ; Zou, Bi ; Li, Yingwen ; Chen, Yao ; Zhang, Weixin ; Mao, Rong ; Ding, Yongzhen ; Wang, Jun ; Lu, Xiankai ; Li, Xiaobo ; Tang, Jianwu ; Li, Zhian ; Wang, Faming
    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios.