Kowalik Zygmunt

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 2 of 2
  • Article
    Preface to special section on Arctic Ocean Model Intercomparison Project (AOMIP) Studies and Results
    (American Geophysical Union, 2007-04-26) Proshutinsky, Andrey ; Kowalik, Zygmunt
  • Article
    A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM) : an application for tidal studies
    (American Geophysical Union, 2009-08-27) Chen, Changsheng ; Gao, Guoping ; Qi, Jianhua ; Proshutinsky, Andrey ; Beardsley, Robert C. ; Kowalik, Zygmunt ; Lin, Huichan ; Cowles, Geoffrey W.
    A spherical coordinate version of the unstructured grid 3-D FVCOM (finite volume coastal ocean model) has been applied to the Arctic Ocean to simulate tides with a horizontal resolution ranging from 1 km in the near-coastal areas to 15 km in the deep ocean. By accurately resolving the irregular coastlines and bathymetry in the Arctic Ocean coastal regions, this model reproduces the diurnal (K1 and O1) and semidiurnal (M2 and S2) tidal wave dynamics and captures the complex tidal structure along the coast, particularly in the narrow straits of the Canadian Archipelago. The simulated tidal parameters (harmonic constituents of sea surface elevation and currents) agree well with the available observational data. High-resolution meshes over the continental shelf and slope capture the detailed spatial structure of topographic trapped shelf waves, which are quite energetic along the Greenland, Siberia, and Spitsbergen continental slope and shelf break areas. Water stratification influences the vertical distribution of tidal currents but not the water transport and thus tidal elevation. The comparison with previous finite difference models suggests that horizontal resolution and geometric fitting are two prerequisites to simulate realistically the tidal energy flux in the Arctic Ocean, particularly in the Canadian Archipelago.