Pold Grace

No Thumbnail Available
Last Name
Pold
First Name
Grace
ORCID
0000-0003-4418-4246

Search Results

Now showing 1 - 8 of 8
  • Article
    Warming effects on arctic tundra biogeochemistry are limited but habitat-dependent: a meta-analysis
    (Ecological Society of America, 2021-10-12) Pold, Grace ; Baillargeon, Natalie ; Lepe, Adan ; Rastetter, Edward B. ; Sistla, Seeta A.
    Arctic tundra consists of diverse habitats that differ in dominant vegetation, soil moisture regimes, and relative importance of organic vs. inorganic nutrient cycling. The Arctic is also the most rapidly warming global area, with winter warming dominating. This warming is expected to have dramatic effects on tundra carbon and nutrient dynamics. We completed a meta-analysis of 166 experimental warming study papers to evaluate the hypotheses that warming changes tundra biogeochemical cycles in a habitat- and seasonally specific manner and that the carbon (C), nitrogen (N), and phosphorus (P) cycles will be differentially accelerated, leading to decoupling of elemental cycles. We found that nutrient availability and plant leaf stoichiometry responses to experimental warming were variable and overall weak, but that both gross primary productivity and the plant C pool tended to increase with growing season warming. The effects of winter warming on C fluxes did not extend into the growing season. Overall, although warming led to more consistent increases in C fluxes compared to N or P fluxes, evidence for decoupling of biogeochemical cycles is weak and any effect appears limited to heath habitats. However, data on many habitats are too sparse to be able to generalize how warming might decouple biogeochemical cycles, and too few year-round warming studies exist to ascertain whether the season under which warming occurs alters how ecosystems respond to warming. Coordinated field campaigns are necessary to more robustly document tundra habitat-specific responses to realistic climate warming scenarios in order to better understand the mechanisms driving this heterogeneity and identify the tundra habitats, communities, and soil pools most susceptible to warming.
  • Article
    Long-term warming alters carbohydrate degradation potential in temperate forest soils
    (American Society for Microbiology, 2016-09-02) Pold, Grace ; Billings, Andrew F. ; Blanchard, Jeffrey L. ; Burkhardt, Daniel B. ; Frey, Serita D. ; Melillo, Jerry M. ; Schnabel, Julia ; van Diepen, Linda T. A. ; DeAngelis, Kristen M.
    As Earth's climate warms, soil carbon pools and the microbial communities that process them may change, altering the way in which carbon is recycled in soil. In this study, we used a combination of metagenomics and bacterial cultivation to evaluate the hypothesis that experimentally raising soil temperatures by 5°C for 5, 8, or 20 years increased the potential for temperate forest soil microbial communities to degrade carbohydrates. Warming decreased the proportion of carbohydrate-degrading genes in the organic horizon derived from eukaryotes and increased the fraction of genes in the mineral soil associated with Actinobacteria in all studies. Genes associated with carbohydrate degradation increased in the organic horizon after 5 years of warming but had decreased in the organic horizon after warming the soil continuously for 20 years. However, a greater proportion of the 295 bacteria from 6 phyla (10 classes, 14 orders, and 34 families) isolated from heated plots in the 20-year experiment were able to depolymerize cellulose and xylan than bacterial isolates from control soils. Together, these findings indicate that the enrichment of bacteria capable of degrading carbohydrates could be important for accelerated carbon cycling in a warmer world.
  • Article
    Sporadic P limitation constrains microbial growth and facilitates SOM accumulation in the stoichiometrically coupled, acclimating microbe-plant-soil model
    (Elsevier, 2021-11-29) Pold, Grace ; Kwiatkowski, Bonnie L. ; Rastetter, Edward B. ; Sistla, Seeta A.
    Requirements for biomass carbon (C), nitrogen (N), and phosphorus (P) constrain organism growth and are important agents for structuring ecosystems. Arctic tundra habitats are strongly nutrient limited as decomposition and recycling of nutrients are slowed by low temperature. Modeling interactions among these elemental cycles affords an opportunity to explore how disturbances such as climate change might differentially affect these nutrient cycles. Here we introduce a C–N–P-coupled version of the Stoichiometrically Coupled Acclimating Microbe-Plant-Soil (SCAMPS) model, “SCAMPS-CNP”, and a corresponding modified CN-only model, “SCAMPS-CN”. We compared how SCAMPS-CNP and the modified SCAMPS-CN models project a moderate (RCP 6.0) air warming scenario will impact tussock tundra nutrient availability and ecosystem C stocks. SCAMPS-CNP was characterized by larger SOM and smaller organism C stocks compared to SCAMPS-CN, and a greater reduction in ecosystem C stocks under warming. This difference can largely be attributed to a smaller microbial biomass in the CNP model, which, instead of being driven by direct costs of P acquisition, was driven by variable resource limitation due to asynchronous C, N, and P availability and demand. Warming facilitated a greater relative increase in plant and microbial biomass in SCAMPS-CNP, however, facilitated by increased extracellular enzyme pools and activity, which more than offset the metabolic costs associated with their production. Although the microbial community was able to flexibly adapt its stoichiometry and become more bacteria-like (N-rich) in both models, its stoichiometry deviated further from its target value in the CNP model because of the need to balance cellular NP ratio. Our results indicate that seasonality and asynchrony in resources affect predicted changes in ecosystem C storage under warming in these models, and therefore build on a growing body of literature indicating stoichiometry should be considered in carbon cycling projections.
  • Article
    Long-term forest soil warming alters microbial communities in temperate forest soils
    (Frontiers Media, 2015-02-13) DeAngelis, Kristen M. ; Pold, Grace ; Topcuoglu, Begum D. ; van Diepen, Linda T. A. ; Varney, Rebecca M. ; Blanchard, Jeffrey L. ; Melillo, Jerry M. ; Frey, Serita D.
    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.
  • Preprint
    Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
    ( 2017-03) Melillo, Jerry M. ; Frey, Serita D. ; DeAngelis, Kristen M. ; Werner, William J. ; Bernard, Michael J. ; Bowles, F. P. ; Pold, Grace ; Grandy, A. Stuart
    In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.
  • Article
    Changes in substrate availability drive carbon cycle response to chronic warming
    (Elsevier, 2017-03-22) Pold, Grace ; Grandy, A. Stuart ; Melillo, Jerry M. ; DeAngelis, Kristen M.
    As earth's climate continues to warm, it is important to understand how the capacity of terrestrial ecosystems to retain carbon (C) will be affected. We combined measurements of microbial activity with the concentration, quality, and physical accessibility of soil carbon to microorganisms to evaluate the mechanisms by which more than two decades of experimental warming has altered the carbon cycle in a Northeast US temperate deciduous forest. We found that concentrations of soil organic matter were reduced in both the organic and mineral soil horizons. The molecular composition of the carbon was altered in the mineral soil with significant reductions in the relative abundance of polysaccharides and lignin, and an increase in lipids. Mineral-associated organic matter was preferentially depleted by warming in the top 3 cm of mineral soil. We found that potential extracellular enzyme activity per gram of soil at a common temperature was generally unaffected by warming treatment. However, by measuring potential extracellular enzyme activities between 4 and 30 °C, we found that activity per unit microbial biomass at in-situ temperatures was increased by warming. This was associated with a tendency for microbial biomass to decrease with warming. These results indicate that chronic warming has reduced soil organic matter concentrations, selecting for a smaller but more active microbial community increasingly dependent on mineral-associated organic matter.
  • Article
    Microbial diversity drives carbon use efficiency in a model soil
    (Nature Research, 2020-07-23) Domeignoz-Horta, Luiz A. ; Pold, Grace ; Liu, Xiao-Jun Allen ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M.
    Empirical evidence for the response of soil carbon cycling to the combined effects of warming, drought and diversity loss is scarce. Microbial carbon use efficiency (CUE) plays a central role in regulating the flow of carbon through soil, yet how biotic and abiotic factors interact to drive it remains unclear. Here, we combine distinct community inocula (a biotic factor) with different temperature and moisture conditions (abiotic factors) to manipulate microbial diversity and community structure within a model soil. While community composition and diversity are the strongest predictors of CUE, abiotic factors modulated the relationship between diversity and CUE, with CUE being positively correlated with bacterial diversity only under high moisture. Altogether these results indicate that the diversity × ecosystem-function relationship can be impaired under non-favorable conditions in soils, and that to understand changes in soil C cycling we need to account for the multiple facets of global changes.
  • Article
    Substrate availability and not thermal acclimation controls microbial temperature sensitivity response to long‐term warming
    (Wiley, 2022-11-30) Domeignoz‐Horta, Luiz A. ; Pold, Grace ; Erb, Hailey ; Sebag, David ; Verrecchia, Eric ; Northen, Trent ; Louie, Katherine ; Eloe‐Fadrosh, Emiley ; Pennacchio, Christa ; Knorr, Melissa A. ; Frey, Serita D. ; Melillo, Jerry M. ; DeAngelis, Kristen M.
    Microbes are responsible for cycling carbon (C) through soils, and predicted changes in soil C stocks under climate change are highly sensitive to shifts in the mechanisms assumed to control the microbial physiological response to warming. Two mechanisms have been suggested to explain the long‐term warming impact on microbial physiology: microbial thermal acclimation and changes in the quantity and quality of substrates available for microbial metabolism. Yet studies disentangling these two mechanisms are lacking. To resolve the drivers of changes in microbial physiology in response to long‐term warming, we sampled soils from 13‐ and 28‐year‐old soil warming experiments in different seasons. We performed short‐term laboratory incubations across a range of temperatures to measure the relationships between temperature sensitivity of physiology (growth, respiration, carbon use efficiency, and extracellular enzyme activity) and the chemical composition of soil organic matter. We observed apparent thermal acclimation of microbial respiration, but only in summer, when warming had exacerbated the seasonally‐induced, already small dissolved organic matter pools. Irrespective of warming, greater quantity and quality of soil carbon increased the extracellular enzymatic pool and its temperature sensitivity. We propose that fresh litter input into the system seasonally cancels apparent thermal acclimation of C‐cycling processes to decadal warming. Our findings reveal that long‐term warming has indirectly affected microbial physiology via reduced C availability in this system, implying that earth system models including these negative feedbacks may be best suited to describe long‐term warming effects on these soils.Warming can accelerate or decelerate soil microbial response to warmer temperatures. Here we provide support for the hypothesis that microbial temperature sensitivity is contingent upon substrate availability, which itself is reduced by warming. Thus we show the complex interplay between microbial activity and changes in soil carbon stocks.