Jauffrais Thierry

No Thumbnail Available
Last Name
Jauffrais
First Name
Thierry
ORCID
0000-0001-9681-6239

Search Results

Now showing 1 - 3 of 3
  • Preprint
    Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats
    ( 2017-10) Jauffrais, Thierry ; LeKieffre, Charlotte ; Koho, Karoliina ; Tsuchiya, Masashi ; Schweizer, Magali ; Bernhard, Joan M. ; Meibom, Anders ; Geslin, Emmanuelle
    Assimilation, sequestration and maintenance of foreign chloroplasts inside an organism is termed “chloroplast sequestration” or “kleptoplasty”. This phenomenon is known in certain benthic foraminifera, in which such kleptoplasts can be found both intact and functional, but with different retention times depending on foraminiferal species. In the present study, seven species of benthic foraminifera (Haynesina germanica, Elphidium williamsoni, E. selseyense, E. oceanense, E. aff. E. crispum, Planoglabratella opercularis and Ammonia sp.) were collected from shallow-water benthic habitats and examined with transmission electron microscope (TEM) for cellular ultrastructure to ascertain attributes of kleptoplasts. Results indicate that all these foraminiferal taxa actively obtain kleptoplasts but organized them differently within their endoplasm. In some species, the kleptoplasts were evenly distributed throughout the endoplasm (e.g., H. germanica, E. oceanense, Ammonia sp.), whereas other species consistently had plastids distributed close to the external cell membrane (e.g., Elphidium williamsoni, E. selseyense, P. opercularis). Chloroplast degradation also seemed to differ between species, as many degraded plastids were found in Ammonia sp. and E. oceanense compared to other investigated species. Digestion ability, along with different feeding and sequestration strategies may explain the differences in retention time between taxa. Additionally, the organization of the sequestered plastids within the endoplasm may also suggest behavioral strategies to expose and/or protect the sequestered plastids to/from light and/or to favor gas and/or nutrient exchange with their surrounding habitats.
  • Article
    Ammonium and sulfate assimilation is widespread in benthic foraminifera
    (Frontiers Media, 2022-07-20) LeKieffre, Charlotte ; Jauffrais, Thierry ; Bernhard, Joan M. ; Filipsson, Helena L. ; Schmidt, Christiane ; Roberge, Hélène ; Maire, Olivier ; Panieri, Giuliana ; Geslin, Emmanuelle ; Meibom, Anders
    Nitrogen and sulfur are key elements in the biogeochemical cycles of marine ecosystems to which benthic foraminifera contribute significantly. Yet, cell-specific assimilation of ammonium, nitrate and sulfate by these protists is poorly characterized and understood across their wide range of species-specific trophic strategies. For example, detailed knowledge about ammonium and sulfate assimilation pathways is lacking and although some benthic foraminifera are known to maintain intracellular pools of nitrate and/or to denitrify, the potential use of nitrate-derived nitrogen for anabolic processes has not been systematically studied. In the present study, NanoSIMS isotopic imaging correlated with transmission electron microscopy was used to trace the incorporation of isotopically labeled inorganic nitrogen (ammonium or nitrate) and sulfate into the biomass of twelve benthic foraminiferal species from different marine environments. On timescales of twenty hours, no detectable 15N-enrichments from nitrate assimilation were observed in species known to perform denitrification, indicating that, while denitrifying foraminifera store intra-cellular nitrate, they do not use nitrate-derived nitrogen to build their biomass. Assimilation of both ammonium and sulfate, with corresponding 15N and 34S-enrichments, were observed in all species investigated (with some individual exceptions for sulfate). Assimilation of ammonium and sulfate thus can be considered widespread among benthic foraminifera. These metabolic capacities may help to underpin the ability of benthic foraminifera to colonize highly diverse marine habitats.
  • Article
    Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer
    (Nature Publishing Group, 2018-07-04) LeKieffre, Charlotte ; Jauffrais, Thierry ; Geslin, Emmanuelle ; Jesus, Bruno ; Bernhard, Joan M. ; Giovani, Maria-Evangelia ; Meibom, Anders
    Haynesina germanica, an ubiquitous benthic foraminifer in intertidal mudflats, has the remarkable ability to isolate, sequester, and use chloroplasts from microalgae. The photosynthetic functionality of these kleptoplasts has been demonstrated by measuring photosystem II quantum efficiency and O2 production rates, but the precise role of the kleptoplasts in foraminiferal metabolism is poorly understood. Thus, the mechanism and dynamics of C and N assimilation and translocation from the kleptoplasts to the foraminiferal host requires study. The objective of this study was to investigate, using correlated TEM and NanoSIMS imaging, the assimilation of inorganic C and N (here ammonium, NH4+) in individuals of a kleptoplastic benthic foraminiferal species. H. germanica specimens were incubated for 20 h in artificial seawater enriched with H13CO3− and 15NH4+ during a light/dark cycle. All specimens (n = 12) incorporated 13C into their endoplasm stored primarily in the form of lipid droplets. A control incubation in darkness resulted in no 13C-uptake, strongly suggesting that photosynthesis is the process dominating inorganic C assimilation. Ammonium assimilation was observed both with and without light, with diffuse 15N-enrichment throughout the cytoplasm and distinct 15N-hotspots in fibrillar vesicles, electron-opaque bodies, tubulin paracrystals, bacterial associates, and, rarely and at moderate levels, in kleptoplasts. The latter observation might indicate that the kleptoplasts are involved in N assimilation. However, the higher N assimilation observed in the foraminiferal endoplasm incubated without light suggests that another cytoplasmic pathway is dominant, at least in darkness. This study clearly shows the advantage provided by the kleptoplasts as an additional source of carbon and provides observations of ammonium uptake by the foraminiferal cell.