Chauchat Julien

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 4 of 4
  • Preprint
    Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow
    ( 2017-10-31) Cheng, Zhen ; Chauchat, Julien ; Hsu, Tian-Jian ; Calantoni, Joseph
    A Reynolds-averaged Euler–Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low Reynolds number corrected turbulence closure modified for two-phase flows. To model the effect of turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the coefficient, C0, associated with the turbulence-sediment interaction time. A value was suggested to match the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velocity, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow suggested that when C0 was decreased to C0 < 3, the simulation under-predicted the amount of suspended sediment in the dilute region and the Schmidt number is over-predicted (Sc > 1.0). Additional simulations for a range of Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is less than 1.25.
  • Article
    SedFoam-2.0 : a 3-D two-phase flow numerical model for sediment transport
    (Copernicus Publications on behalf of the European Geosciences Union, 2017-11-30) Chauchat, Julien ; Cheng, Zhen ; Nagel, Tim ; Bonamy, Cyrille ; Hsu, Tian-Jian
    In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
  • Preprint
    An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
    ( 2017-11-08) Cheng, Zhen ; Hsu, Tian-Jian ; Chauchat, Julien
    A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1–30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while the turbulent sweep events are mostly associated with the downward sediment deposition flux.
  • Article
    A numerical study of sheet flow under monochromatic nonbreaking waves using a free surface resolving Eulerian two‐phase flow model
    (John Wiley & Sons, 2018-07-05) Kim, Yeulwoo ; Cheng, Zhen ; Hsu, Tian-Jian ; Chauchat, Julien
    We present a new methodology that is able to concurrently resolve free surface wavefield, bottom boundary layer, and sediment transport processes throughout the entire water column. The new model, called SedWaveFoam, is developed by integrating an Eulerian two‐phase model for sediment transport, SedFoam, and a surface wave solver, InterFoam/waves2Foam, in the OpenFOAM framework. SedWaveFoam is validated with a large wave flume data for sheet flow driven by monochromatic nonbreaking waves. To isolate the effect of free surface, SedWaveFoam results are contrasted with one‐dimensional‐vertical SedFoam results, where the latter represents the oscillating water tunnel condition. Results demonstrate that wave‐averaged total sediment fluxes in both models are onshore‐directed; however, this onshore transport is significantly enhanced under surface waves. Onshore‐directed near‐bed sediment flux is driven by a small mean current mainly associated with velocity skewness. More importantly, progressive wave streaming drives onshore transport mostly in suspended load region due to an intrawave sediment flux. Further analysis suggests that the enhanced onshore transport in suspended load is due to a “wave‐stirring” mechanism, which signifies a nonlinear interaction between waves, streaming currents, and sediment suspension. We present some preliminary efforts to parameterize the wave‐stirring mechanism in intrawave sediment transport formulations.