Kim Ju-Hyoung

No Thumbnail Available
Last Name
Kim
First Name
Ju-Hyoung
ORCID

Search Results

Now showing 1 - 4 of 4
Thumbnail Image
Article

N2O dynamics in the western Arctic Ocean during the summer of 2017

2021-06-15 , Heo, Jang-Mu , Kim, Seong-Su , Kang, Sung-Ho , Yang, Eun Jin , Park, Ki-Tae , Jung, Jinyoung , Cho, Kyoung-Ho , Kim, Ju-Hyoung , Macdonald, Alison M. , Yoon, Joo-Eun , Kim, Hyo-Ryeon , Eom, Sang-Min , Lim, Jae-Hyun , Kim, Il-Nam

The western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.

Thumbnail Image
Article

Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in western Arctic surface waters (from the Bering Strait to the Chukchi Borderland)

2019-11-14 , Lee, Jiyoung , Kang, Sung-Ho , Yang, Eun Jin , Macdonald, Alison M. , Joo, Hyoung Min , Park, Junhyung , Kim, Kwangmin , Lee, Gi Seop , Kim, Ju-Hyoung , Yoon, Joo-Eun , Kim, Seong-Su , Lim, Jae-Hyun , Kim, Il-Nam

The western Arctic Ocean is experiencing some of the most rapid environmental changes in the Arctic. However, little is known about the microbial community response to these changes. Employing observations from the summer of 2017, this study investigated latitudinal variations in bacterial community composition in surface waters between the Bering Strait and Chukchi Borderland and the factors driving the changes. Results indicate three distinctive communities. Southern Chukchi bacterial communities are associated with nutrient rich conditions, including genera such as Sulfitobacter, whereas the northern Chukchi bacterial community is dominated by SAR clades, Flavobacterium, Paraglaciecola, and Polaribacter genera associated with low nutrients and sea ice conditions. The frontal region, located on the boundary between the southern and northern Chukchi, is a transition zone with intermediate physical and biogeochemical properties; however, bacterial communities differed markedly from those found to the north and south. In the transition zone, Sphingomonas, with as yet undetermined ecological characteristics, are relatively abundant. Latitudinal distributions in bacterial community composition are mainly attributed to physical and biogeochemical characteristics, suggesting that these communities are susceptible to Arctic environmental changes. These findings provide a foundation to improve understanding of bacterial community variations in response to a rapidly changing Arctic Ocean.

Thumbnail Image
Article

Estimating remineralized phosphate and its remineralization rate in the northern East China Sea during Summer 1997 : a snapshot study before Three-Gorges Dam construction

2016-12 , Kim, Hyun-Cheol , Kim, Il-Nam , Macdonald, Alison M. , Park, Ki-Tae , Kim, Ju-Hyoung , Yoon, Joo-Eun , Lee, Tongsup

The northern East China Sea (a.k.a., “The South Sea”) is a dynamic zone that exerts a variety of effects on the marine ecosystem due to Three-Gorges Dam construction. As the northern East China Sea region is vulnerable to climate forcing and anthropogenic impacts, it is important to investigate how the remineralization rate in the northern East China Sea has changed in response to such external forcing. We used an historical hydrographic dataset from August 1997 to obtain a baseline for future comparison. We estimate the amount of remineralized phosphate by decomposing the physical mixing and biogeochemical process effect using water column measurements (temperature, salinity, and phosphate). The estimated remineralized phosphate column inventory ranged from 0.8 to 42.4 mmol P m-2 (mean value of 15.2 ± 12.0 mmol P m-2). Our results suggest that the Tsushima Warm Current was a strong contributor to primary production during the summer of 1997 in the study area. The estimated summer (June - August) remineralization rate in the region before Three-Gorges Dam construction was 18 ± 14 mmol C m-2 d-1.

Thumbnail Image
Article

Spatial and temporal variabilities of spring Asian dust events and their impacts on chlorophyll-a concentrations in the western North Pacific Ocean

2017-02-15 , Yoon, Joo-Eun , Kim, Kitae , Macdonald, Alison M. , Park, Ki-Tae , Kim, Hyun-Cheol , Yoo, Kyu-Cheul , Yoon, Ho-Il , Yang, Eun Jin , Jung, Jinyoung , Lim, Jae-Hyun , Kim, Ju-Hyoung , Lee, Jiyoung , Choi, Tae-Jun , Song, Jae-Min , Kim, Il-Nam

As the western North Pacific Ocean is located downwind of the source regions for spring Asian dust, it is an ideal location for determining the response of open waters to these events. Spatial analysis of spring Asian dust events from source regions to the western North Pacific, using long-term daily aerosol index data, revealed three different transport pathways supported by the westerly wind system: one passing across the northern East/Japan Sea (40°N–50°N), a second moving over the entire East/Japan Sea (35°N–55°N), and a third flowing predominantly over the Siberian continent (>50°N). Our results indicate that strong spring Asian dust events can increase ocean primary productivity by more than 70% (>2-fold increase in chlorophyll-a concentrations) compared to weak/nondust conditions. Therefore, attention should be paid to the recent downturn in the number of spring Asian dust events and to the response of primary production in the western North Pacific to this change.