Loose Martin

No Thumbnail Available
Last Name
Loose
First Name
Martin
ORCID

Search Results

Now showing 1 - 2 of 2
  • Preprint
    Using supported bilayers to study the spatiotemporal organization of membrane-bound proteins
    ( 2015-01) Nguyen, Phuong A. ; Field, Christine M. ; Groen, Aaron C. ; Mitchison, Timothy J. ; Loose, Martin
    Cell division in prokaryotes and eukaryotes is commonly initiated by the well-controlled binding of proteins to the cytoplasmic side of the cell membrane. However, a precise characterization of the spatiotemporal dynamics of membrane-bound proteins is often difficult to achieve in vivo. Here, we present protocols for the use of supported lipid bilayers to rebuild the cytokinetic machineries of cells with greatly different dimensions: the bacterium Escherichia coli and eggs of the vertebrate Xenopus laevis. Combined with total internal reflection fluorescence (TIRF) microscopy, these experimental setups allow for precise quantitative analyses of membrane-bound proteins. The protocols described to obtain glass-supported membranes from bacterial and vertebrate lipids can be used as starting points for other reconstitution experiments. We believe that similar biochemical assays will be instrumental to study the biochemistry and biophysics underlying a variety of complex cellular tasks, such as signaling, vesicle trafficking and cell motility.
  • Article
    Spatial variation of microtubule depolymerization in large asters
    (American Society for Cell Biology, 2021-04-19) Ishihara, Keisuke ; Decker, Franziska ; Caldas, Paulo ; Pelletier, James F. ; Loose, Martin ; Brugués, Jan ; Mitchison, Timothy J.
    Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.