Watanabe Hiromi K.

No Thumbnail Available
Last Name
Watanabe
First Name
Hiromi K.
ORCID

Search Results

Now showing 1 - 5 of 5
  • Article
    A blueprint for an inclusive, global deep-sea ocean decade field program
    (Frontiers Media, 2020-11-25) Howell, Kerry L. ; Hilario, Ana ; Allcock, A. Louise ; Bailey, David ; Baker, Maria C. ; Clark, Malcolm R. ; Colaço, Ana ; Copley, Jonathan T. ; Cordes, Erik E. ; Danovaro, Roberto ; Dissanayake, Awantha ; Escobar Briones, Elva ; Esquete, Patricia ; Gallagher, Austin J. ; Gates, Andrew R. ; Gaudron, Sylvie M. ; German, Christopher R. ; Gjerde, Kristina M. ; Higgs, Nicholas D. ; Le Bris, Nadine ; Levin, Lisa A ; Manea, Elisabetta ; McClain, Craig ; Menot, Lenaick ; Mestre, Mireia ; Metaxas, Anna ; Milligan, Rosanna J. ; Muthumbi, Agnes W. N. ; Narayanaswamy, Bhavani E. ; Ramalho, Sofia P. ; Ramirez-Llodra, Eva ; Robson, Laura M. ; Rogers, Alex D. ; Sellanes, Javier ; Sigwart, Julia D. ; Sink, Kerry ; Snelgrove, Paul V. R. ; Stefanoudis, Paris V. ; Sumida, Paulo Y. ; Taylor, Michelle L. ; Thurber, Andrew R. ; Vieira, Rui P. ; Watanabe, Hiromi K. ; Woodall, Lucy C. ; Xavier, Joana R.
    The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
  • Article
    Exploring the ecology of deep-sea hydrothermal vents in a metacommunity framework
    (Frontiers Media, 2018-02-21) Mullineaux, Lauren S. ; Metaxas, Anna ; Beaulieu, Stace E. ; Bright, Monika ; Gollner, Sabine ; Grupe, Benjamin ; Herrera, Santiago ; Kellner, Julie B. ; Levin, Lisa A. ; Mitarai, Satoshi ; Neubert, Michael G. ; Thurnherr, Andreas M. ; Tunnicliffe, Verena ; Watanabe, Hiromi K. ; Won, Yong-Jin
    Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: (1) what is the influence of the magnitude and rate of disturbance on ecological attributes, such as time to extinction or resilience in a metacommunity; (2) what interactions between local and regional processes control species diversity, and (3) which communities are “hot spots” of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.
  • Article
    sFDvent: a global trait database for deep-sea hydrothermal-vent fauna
    (Wiley, 2019-07-30) Chapman, Abbie S. A. ; Beaulieu, Stace E. ; Colaço, Ana ; Gebruk, Andrey V. ; Hilario, Ana ; Kihara, Terue C. ; Ramirez-Llodra, Eva ; Sarrazin, Jozée ; Tunnicliffe, Verena ; Amon, Diva ; Baker, Maria C. ; Boschen‐Rose, Rachel E. ; Chen, Chong ; Cooper, Isabelle J. ; Copley, Jonathan T. ; Corbari, Laure ; Cordes, Erik E. ; Cuvelier, Daphne ; Duperron, Sébastien ; Du Preez, Cherisse ; Gollner, Sabine ; Horton, Tammy ; Hourdez, Stephane ; Krylova, Elena M. ; Linse, Katrin ; LokaBharathi, P. A. ; Marsh, Leigh ; Matabos, Marjolaine ; Mills, Susan W. ; Mullineaux, Lauren S. ; Rapp, Hans Tore ; Reid, William D. K. ; Rybakova, Elena Goroslavskaya ; Thomas, Tresa Remya A. ; Southgate, Samuel James ; Stöhr, Sabine ; Turner, Phillip J. ; Watanabe, Hiromi K. ; Yasuhara, Moriaki ; Bates, Amanda E.
    Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
  • Article
    Nutritional sources of meio- and macrofauna at hydrothermal vents and adjacent areas: Natural-abundance radiocarbon and stable isotope analyses
    (Inter Research, 2019-07-18) Nomaki, Hidetaka ; Uejima, Yuki ; Ogawa, Nanako O. ; Yamane, Masako ; Watanabe, Hiromi K. ; Senokuchi, Reina ; Bernhard, Joan M. ; Kitahashi, Tomo ; Miyairi, Yosuke ; Yokoyama, Yusuke ; Ohkouchi, Naohiko ; Shimanaga, Motohiro
    Deep-sea hydrothermal vents host unique marine ecosystems that rely on organic matter produced by chemoautotrophic microbes together with phytodetritus. Although meiofauna can be abundant at such vents, the small size of meiofauna limits studies on nutritional sources. Here we investigated dietary sources of meio- and macrofauna at hydrothermal vent fields in the western North Pacific using stable carbon and nitrogen isotope ratios (δ13C, δ15N) and natural-abundance radiocarbon (Δ14C). Bacterial mats and Paralvinella spp. (polychaetes) collected from hydrothermal vent chimneys were enriched in 13C (up to -10‰) and depleted in 14C (-700 to -580‰). The δ13C and Δ14C values of dirivultid copepods, endemic to hydrothermal vent chimneys, were -11‰ and -661‰, respectively, and were similar to the values in the bacterial mats and Paralvinella spp. but distinct from those of nearby non-vent sediments (δ13C: ~-24‰) and water-column plankton (Δ14C: ~40‰). In contrast, δ13C values of nematodes from vent chimneys were similar to those of non-vent sites (ca. -25‰). Results suggest that dirivultids relied on vent chimney bacterial mats as their nutritional source, whereas vent nematodes did not obtain significant nutrient amounts from the chemolithoautotrophic microbes. The Δ14C values of Neoverruca intermedia (vent barnacle) suggest they gain nutrition from chemoautotrophic microbes, but the source of inorganic carbon was diluted with bottom water much more than those of the Paralvinella habitat, reflecting Neoverruca’s more distant distribution from active venting. The combination of stable and radioisotope analyses on hydrothermal vent organisms provides valuable information on their nutritional sources and, hence, their adaptive ecology to chemosynthesis-based ecosystems.
  • Article
    Population genetic structure of the deep‐sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) in the Northwest Pacific
    (John Wiley & Sons, 2018-08-21) Xu, Ting ; Sun, Jin ; Watanabe, Hiromi K. ; Chen, Chong ; Nakamura, Masako ; Ji, Rubao ; Feng, Dong ; Lv, Jia ; Wang, Shi ; Bao, Zhenmin ; Qian, Pei-Yuan ; Qiu, Jian-Wen
    Studying population genetics of deep‐sea animals helps us understand their history of habitat colonization and population divergence. Here, we report a population genetic study of the deep‐sea mussel Bathymodiolus platifrons (Bivalvia: Mytilidae) widely distributed in chemosynthesis‐based ecosystems in the Northwest Pacific. Three mitochondrial genes (i.e., atp6, cox1, and nad4) and 6,398 genomewide single nucleotide polymorphisms (SNPs) were obtained from 110 individuals from four hydrothermal vents and two methane seeps. When using the three mitochondrial genes, nearly no genetic differentiation was detected for B. platifrons in the Northwest Pacific. Nevertheless, when using SNP datasets, all individuals in the South China Sea (SCS) and three individuals in Sagami Bay (SB) together formed one genetic cluster that was distinct from the remaining individuals. Such genetic divergence indicated a genetic barrier to gene flow between the SCS and the open Northwest Pacific, resulting in the co‐occurrence of two cryptic semi‐isolated lineages. When using 125 outlier SNPs identified focusing on individuals in the Okinawa Trough (OT) and SB, a minor genetic subdivision was detected between individuals in the southern OT (S‐OT) and those in the middle OT (M‐OT) and SB. This result indicated that, although under the influence of the Kuroshio Current and the North Pacific Intermediate Water, subtle geographic barriers may exist between the S‐OT and the M‐OT. Introgression analyses based on these outlier SNPs revealed that Hatoma Knoll in the S‐OT represents a possible contact zone for individuals in the OT‐SB region. Furthermore, migration dynamic analyses uncovered stronger gene flow from Dai‐yon Yonaguni Knoll in the S‐OT to the other local populations, compared to the reverse directions. Taken together, the present study offered novel perspectives on the genetic connectivity of B. platifrons mussels, revealing the potential interaction of ocean currents and geographic barriers with adaption and reproductive isolation in shaping their migration patterns and genetic differentiation in the Northwest Pacific.