Lupker Maarten

No Thumbnail Available
Last Name
Lupker
First Name
Maarten
ORCID
0000-0001-7609-6246

Search Results

Now showing 1 - 6 of 6
  • Preprint
    Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)
    ( 2011-12-01) Lupker, Maarten ; France-Lanord, Christian ; Galy, Valier ; Lave, Jerome ; Gaillardet, Jerome ; Gajurel, Ananta Prasad ; Guilmette, Caroline ; Rahman, Mustafizur ; Singh, Sunil Kumar ; Sinha, Rajiv
    We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92)109 and (69 ± 22)109 moles/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18)109 and (42 ± 13)109 moles/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20109 moles/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.
  • Article
    Climate control on terrestrial biospheric carbon turnover
    (National Academy of Sciences, 2021-02-23) Eglinton, Timothy I. ; Galy, Valier ; Hemingway, Jordon D. ; Feng, Xiaojuan ; Bao, Hongyan ; Blattmann, Thomas M. ; Dickens, Angela F. ; Gies, Hannah ; Giosan, Liviu ; Haghipour, Negar ; Hou, Pengfei ; Lupker, Maarten ; McIntyre, Cameron P. ; Montlucon, Daniel B. ; Peucker-Ehrenbrink, Bernhard ; Ponton, Camilo ; Schefuß, Enno ; Schwab, Melissa S. ; Voss, Britta M. ; Wacker, Lukas ; Wu, Ying ; Zhao, Meixun
    Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
  • Article
    A Rouse-based method to integrate the chemical composition of river sediments : application to the Ganga basin
    (American Geophysical Union, 2011-11-01) Lupker, Maarten ; France-Lanord, Christian ; Lave, Jerome ; Bouchez, Julien ; Galy, Valier ; Metivier, Francois ; Gaillardet, Jerome ; Lartiges, Bruno ; Mugnier, Jean-Louis
    The Ganga River is one of the main conveyors of sediments produced by Himalayan erosion. Determining the flux of elements transported through the system is essential to understand the dynamics of the basin. This is hampered by the chemical heterogeneity of sediments observed both in the water column and under variable hydrodynamic conditions. Using Acoustic Doppler Current Profiler (ADCP) acquisitions with sediment depth profile sampling of the Ganga in Bangladesh we build a simple model to derive the annual flux and grain size distributions of the sediments. The model shows that ca. 390 (±30) Mt of sediments are transported on average each year through the Ganga at Haring Bridge (Bangladesh). Modeled average sediment grain size parameters D50 and D84 are 27 (±4) and 123 (±9) μm, respectively. Grain size parameters are used to infer average chemical compositions of the sediments owing to a strong grain size chemical composition relation. The integrated sediment flux is characterized by low Al/Si and Fe/Si ratios that are close to those inferred for the Himalayan crust. This implies that only limited sequestration occurs in the Gangetic floodplain. The stored sediment flux is estimated to c.a. 10% of the initial Himalayan sediment flux by geochemical mass balance. The associated, globally averaged sedimentation rates in the floodplain are found to be ca. 0.08 mm/yr and yield average Himalayan erosion rate of ca. 0.9 mm/yr. This study stresses the need to carefully address the average composition of river sediments before solving large-scale geochemical budgets.
  • Article
    Reconciling drainage and receiving basin signatures of the Godavari River system
    (Copernicus Publications on behalf of the European Geosciences Union, 2018-06-07) Usman, Muhammed ; Kirkels, Frédérique M. S. A. ; Zwart, Huub M. ; Basu, Sayak ; Ponton, Camilo ; Blattmann, Thomas M. ; Ploetze, Michael ; Haghipour, Negar ; McIntyre, Cameron P. ; Peterse, Francien ; Lupker, Maarten ; Giosan, Liviu ; Eglinton, Timothy I.
    The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of "old" or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
  • Article
    Constraining instantaneous fluxes and integrated compositions of fluvially discharged organic matter
    (American Geophysical Union, 2018-06-07) Freymond, Chantal V. ; Lupker, Maarten ; Peterse, Francien ; Haghipour, Negar ; Wacker, Lukas ; Filip, Florin ; Giosan, Liviu ; Eglinton, Timothy
    Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC and biomarker fluxes and integrated compositions during high to moderate discharges. During high (moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant‐derived long‐chain fatty acids (LCFA), 34 (21) g/s short‐chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids (brGDGTs). Integrated stable carbon isotopic compositions were TOC: −28.0 (−27.6)‰, LCFA: −33.5 (−32.8)‰ and Δ14C TOC: −129 (−38)‰, LCFA: −134 (−143)‰, respectively. Such estimates will aid in establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.
  • Article
    Multi-molecular 14C evidence for mineral control on terrestrial carbon storage and export
    (The Royal Society, 2023-10-09) Gies, Hannah ; Lupker, Maarten ; Galy, Valier ; Hemingway, Jordon D. ; Boehman, Brenna ; Schwab, Melissa S. ; Haghipour, Negar ; Eglinton, Timothy I.
    Compound- and compound class-specific radiocarbon analysis of source-diagnostic ‘biomarker’ molecules has emerged as a powerful tool to gain insights into terrestrial carbon cycling. While most studies thus far have focused on higher plant biomarkers (i.e. plant leaf-wax n-alkanoic acids and n-alkanes, lignin-derived phenols), tracing paedogenic carbon is crucial given the pivotal role of soils in modulating ecosystem carbon turnover and organic carbon (OC) export. Here, we determine the radiocarbon (14C) ages of glycerol dialkyl glycerol tetraethers (GDGTs) in riverine sediments and compare them to those of higher plant biomarkers as well as markers of pyrogenic (fire-derived) carbon (benzene polycarboxylic acids, BPCAs) to assess their potential as tracers of soil turnover and export. GDGT Δ14C follows similar relationships with basin properties as vegetation-derived lignin phenols and leaf-wax n-alkanoic acids, suggesting that the radiocarbon ages of these compounds are significantly impacted by intermittent soil storage. Systematic radiocarbon age offsets are observable between the studied biomarkers, which are likely caused by different mobilization pathways and/or stabilization by mineral association.