Correggia Monica

No Thumbnail Available
Last Name
Correggia
First Name
Monica
ORCID

Search Results

Now showing 1 - 3 of 3
  • Article
    Assessment of spatio-temporal variability of faecal pollution along coastal waters during and after rainfall events
    (MDPI, 2022-02-08) Manini, Elena ; Baldrighi, Elisa ; Ricci, Fabio ; Grilli, Federica ; Giovannelli, Donato ; Intoccia, Michele ; Casabianca, Silvia ; Capellacci, Samuela ; Marinchel, Nadia ; Penna, Pierluigi ; Moro, Fabrizio ; Campanelli, Alessandra ; Cordone, Angelina ; Correggia, Monica ; Bastoni, Deborah ; Bolognini, Luigi ; Marini, Mauro ; Penna, Antonella
    More than 80% of wastewaters are discharged into rivers or seas, with a negative impact on water quality along the coast due to the presence of potential pathogens of faecal origin. Escherichia coli and enterococci are important indicators to assess, monitor, and predict microbial water quality in natural ecosystems. During rainfall events, the amount of wastewater delivered to rivers and coastal systems is increased dramatically. This study implements measures capable of monitoring the pathways of wastewater discharge to rivers and the transport of faecal bacteria to the coastal area during and following extreme rainfall events. Spatio-temporal variability of faecal microorganisms and their relationship with environmental variables and sewage outflow in an area located in the western Adriatic coast (Fano, Italy) was monitored. The daily monitoring during the rainy events was carried out for two summer seasons, for a total of five sampling periods. These results highlight that faecal microbial contaminations were related to rainy events with a high flow of wastewater, with recovery times for the microbiological indicators varying between 24 and 72 h and influenced by a dynamic dispersion. The positive correlation between ammonium and faecal bacteria at the Arzilla River and the consequences in seawater can provide a theoretical basis for controlling ammonium levels in rivers as a proxy to monitor the potential risk of bathing waters pathogen pollution.
  • Article
    Surface bacterioplankton community structure crossing the Antarctic Circumpolar Current Fronts
    (MDPI, 2023-03-09) Cordone, Angelina ; Selci, Matteo ; Barosa, Bernardo ; Bastianoni, Alessia ; Bastoni, Deborah ; Bolinesi, Francesco ; Capuozzo, Rosaria ; Cascone, Martina ; Correggia, Monica ; Corso, Davide ; Di Iorio, Luciano ; Misic, Cristina ; Montemagno, Francesco ; Ricciardelli, Annarita ; Saggiomo, Maria ; Tonietti, Luca ; Mangoni, Olga ; Giovannelli, Donato
    The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.
  • Article
    Mapping the microbial diversity associated with different geochemical regimes in the shallow-water hydrothermal vents of the Aeolian archipelago, Italy
    (Frontiers Media, 2023-08-10) Barosa, Bernardo ; Ferrillo, Alessandra ; Selci, Matteo ; Giardina, Marco ; Bastianoni, Alessia ; Correggia, Monica ; Iorio, Luciano di ; Bernardi, Giulia ; Cascone, Martina ; Capuozzo, Rosaria ; Intoccia, Michele ; Price, Roy ; Vetriani, Costantino ; Cordone, Angelina ; Giovannelli, Donato
    Shallow-water hydrothermal vents are unique marine environments ubiquitous along the coast of volcanically active regions of the planet. In contrast to their deep-sea counterparts, primary production at shallow-water vents relies on both photoautotrophy and chemoautotrophy. Such processes are supported by a range of geochemical regimes driven by different geological settings. The Aeolian archipelago, located in the southern Tyrrhenian sea, is characterized by intense hydrothermal activity and harbors some of the best sampled shallow-water vents of the Mediterranean Sea. Despite this, the correlation between microbial diversity, geochemical regimes and geological settings of the different volcanic islands of the archipelago is largely unknown. Here, we report the microbial diversity associated with six distinct shallow-water hydrothermal vents of the Aeolian Islands using a combination of 16S rRNA amplicon sequencing along with physicochemical and geochemical measurements. Samples were collected from biofilms, fluids and sediments from shallow vents on the islands of Lipari, Panarea, Salina, and Vulcano. Two new shallow vent locations are described here for the first time. Our results show the presence of diverse microbial communities consistent in their composition with the local geochemical regimes. The shallow water vents of the Aeolian Islands harbor highly diverse microbial community and should be included in future conservation efforts.