Garcia-Montiel Diana

No Thumbnail Available
Last Name
First Name

Search Results

Now showing 1 - 1 of 1
  • Article
    Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils
    (Ecological Society of America, 2006-12) Perez, Tibisay ; Garcia-Montiel, Diana ; Trumbore, Susan E. ; Tyler, Stanley ; de Camargo, Plinio ; Moreira, Marcelo ; Piccolo, Marisa C. ; Cerri, Carlos C.
    The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: −111‰ ± 12‰ and −31‰ ± 11‰ for a clay-rich Oxisol (TNF), −102‰ ± 5‰ and −45‰ ± 5‰ for a sandier Ultisol (TNF), and −10.4‰ ± 3.5‰ (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (δ15Nα − δ15Nβ, where α indicates the central nitrogen atom and β the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2‰ ± 8.4‰ and 31.6‰ ± 8.1‰, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.