Sarrazin
Jozée
Sarrazin
Jozée
No Thumbnail Available
3 results
Search Results
Now showing
1 - 3 of 3
-
PreprintA dual sensor device to estimate fluid flow velocity at diffuse hydrothermal vents( 2009-06-12) Sarrazin, Jozée ; Rodier, P. ; Tivey, Margaret K. ; Singh, Hanumant ; Schultz, A. ; Sarradin, Pierre-MarieNumerous attempts have been made over the last thirty years to estimate fluid flow rates at hydrothermal vents, either at the exit of black smoker chimneys or within diffuse flow areas. In this study, we combine two methods to accurately estimate fluid flow velocities at diffuse flow areas. While the first method uses a hot film anemometer that performs high frequency measurements, the second allows a relatively rapid assessment of fluid flow velocity through video imagery and provides in situ data to calibrate the sensor. Measurements of flow velocities on hydrothermal diffuse flow areas were obtained on the Mid-Atlantic Ridge (MAR). They range from 1.1 to 4.9 mm/sec., at the substratum level, in low temperature (4.5 to 16.4°C) diffuse flow areas from the Tour Eiffel sulfide edifice. A strong correlation was observed between fluid flow velocities and temperature, supporting the possible use of temperature as a proxy to estimate flow rates in diffuse flow areas where such a simple linear flow/temperature relation is shown to dominate.
-
ArticlesFDvent: a global trait database for deep-sea hydrothermal-vent fauna(Wiley, 2019-07-30) Chapman, Abbie S. A. ; Beaulieu, Stace E. ; Colaço, Ana ; Gebruk, Andrey V. ; Hilario, Ana ; Kihara, Terue C. ; Ramirez-Llodra, Eva ; Sarrazin, Jozée ; Tunnicliffe, Verena ; Amon, Diva ; Baker, Maria C. ; Boschen‐Rose, Rachel E. ; Chen, Chong ; Cooper, Isabelle J. ; Copley, Jonathan T. ; Corbari, Laure ; Cordes, Erik E. ; Cuvelier, Daphne ; Duperron, Sébastien ; Du Preez, Cherisse ; Gollner, Sabine ; Horton, Tammy ; Hourdez, Stephane ; Krylova, Elena M. ; Linse, Katrin ; LokaBharathi, P. A. ; Marsh, Leigh ; Matabos, Marjolaine ; Mills, Susan W. ; Mullineaux, Lauren S. ; Rapp, Hans Tore ; Reid, William D. K. ; Rybakova, Elena Goroslavskaya ; Thomas, Tresa Remya A. ; Southgate, Samuel James ; Stöhr, Sabine ; Turner, Phillip J. ; Watanabe, Hiromi K. ; Yasuhara, Moriaki ; Bates, Amanda E.Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent (sDiv‐funded trait database for the Functional Diversity of vents). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
-
ArticleIntegrating Multidisciplinary Observations in Vent Environments (IMOVE): decadal progress in deep-sea observatories at hydrothermal vents(Frontiers Media, 2022-05-13) Matabos, Marjolaine ; Barreyre, Thibaut ; Juniper, S. Kim ; Cannat, Mathilde ; Kelley, Deborah S. ; Alfaro-Lucas, Joan M. ; Chavagnac, Valerie ; Colaço, Ana ; Escartin, Javier E. ; Escobar Briones, Elva ; Fornari, Daniel J. ; Hasenclever, Jörg ; Huber, Julie A. ; Laës-Huon, Agathe ; Lantéri, Nadine ; Levin, Lisa A. ; Mihaly, Steven F. ; Mittelstaedt, Eric ; Pradillon, Florence ; Sarradin, Pierre-Marie ; Sarradin, Pierre-Marie ; Sarrazin, Jozée ; Tomasi, Beatrice ; Venkatesan, Ramasamy ; Vic, ClémentThe unique ecosystems and biodiversity associated with mid-ocean ridge (MOR) hydrothermal vent systems contrast sharply with surrounding deep-sea habitats, however both may be increasingly threatened by anthropogenic activity (e.g., mining activities at massive sulphide deposits). Climate change can alter the deep-sea through increased bottom temperatures, loss of oxygen, and modifications to deep water circulation. Despite the potential of these profound impacts, the mechanisms enabling these systems and their ecosystems to persist, function and respond to oceanic, crustal, and anthropogenic forces remain poorly understood. This is due primarily to technological challenges and difficulties in accessing, observing and monitoring the deep-sea. In this context, the development of deep-sea observatories in the 2000s focused on understanding the coupling between sub-surface flow and oceanic and crustal conditions, and how they influence biological processes. Deep-sea observatories provide long-term, multidisciplinary time-series data comprising repeated observations and sampling at temporal resolutions from seconds to decades, through a combination of cabled, wireless, remotely controlled, and autonomous measurement systems. The three existing vent observatories are located on the Juan de Fuca and Mid-Atlantic Ridges (Ocean Observing Initiative, Ocean Networks Canada and the European Multidisciplinary Seafloor and water column Observatory). These observatories promote stewardship by defining effective environmental monitoring including characterizing biological and environmental baseline states, discriminating changes from natural variations versus those from anthropogenic activities, and assessing degradation, resilience and recovery after disturbance. This highlights the potential of observatories as valuable tools for environmental impact assessment (EIA) in the context of climate change and other anthropogenic activities, primarily ocean mining. This paper provides a synthesis on scientific advancements enabled by the three observatories this last decade, and recommendations to support future studies through international collaboration and coordination. The proposed recommendations include: i) establishing common global scientific questions and identification of Essential Ocean Variables (EOVs) specific to MORs, ii) guidance towards the effective use of observatories to support and inform policies that can impact society, iii) strategies for observatory infrastructure development that will help standardize sensors, data formats and capabilities, and iv) future technology needs and common sampling approaches to answer today’s most urgent and timely questions.