Trumbore Susan E.

No Thumbnail Available
Last Name
Trumbore
First Name
Susan E.
ORCID

Search Results

Now showing 1 - 4 of 4
  • Article
    Blank assessment for ultra-small radiocarbon samples : chemical extraction and separation versus AMS
    (Dept. of Geosciences, University of Arizona, 2010-08) Santos, Guaciara M. ; Southon, John R. ; Drenzek, Nicholas J. ; Ziolkowski, Lori A. ; Druffel, Ellen R. M. ; Xu, Xiaomei ; Zhang, Dachun ; Trumbore, Susan E. ; Eglinton, Timothy I. ; Hughen, Konrad A.
    The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ~0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ~0.6 ± 0.3 μg C, while DC is ~0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ~1% for ~0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.
  • Article
    Soil carbon dynamics in soybean cropland and forests in Mato Grosso, Brazil
    (John Wiley & Sons, 2018-01-05) Nagy, R. Chelsea ; Porder, Stephen ; Brando, Paulo ; Davidson, Eric A. ; Figueira, Adelaine Michela e Silva ; Neill, Christopher ; Riskin, Shelby H. ; Trumbore, Susan E.
    Climate and land use models predict that tropical deforestation and conversion to cropland will produce a large flux of soil carbon (C) to the atmosphere from accelerated decomposition of soil organic matter (SOM). However, the C flux from the deep tropical soils on which most intensive crop agriculture is now expanding remains poorly constrained. To quantify the effect of intensive agriculture on tropical soil C, we compared C stocks, radiocarbon, and stable C isotopes to 2 m depth from forests and soybean cropland created from former pasture in Mato Grosso, Brazil. We hypothesized that soil disturbance, higher soil temperatures (+2°C), and lower OM inputs from soybeans would increase soil C turnover and deplete C stocks relative to nearby forest soils. However, we found reduced C concentrations and stocks only in surface soils (0–10 cm) of soybean cropland compared with forests, and these differences could be explained by soil mixing during plowing. The amount and Δ14C of respired CO2 to 50 cm depth were significantly lower from soybean soils, yet CO2 production at 2 m deep was low in both forest and soybean soils. Mean surface soil δ13C decreased by 0.5‰ between 2009 and 2013 in soybean cropland, suggesting low OM inputs from soybeans. Together these findings suggest the following: (1) soil C is relatively resistant to changes in land use and (2) conversion to cropland caused a small, measurable reduction in the fast-cycling C pool through reduced OM inputs, mobilization of older C from soil mixing, and/or destabilization of SOM in surface soils.
  • Article
    Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes
    (Copernicus Publications on behalf of the European Geosciences Union, 2010-07-09) Bahn, Michael ; Reichstein, M. ; Davidson, Eric A. ; Grunzweig, J. ; Jung, M. ; Carbone, M. S. ; Epron, D. ; Misson, L. ; Nouvellon, Y. ; Roupsard, O. ; Savage, K. ; Trumbore, Susan E. ; Gimeno, C. ; Curiel Yuste, J. ; Tang, Jianwu ; Vargas, Rodrigo ; Janssens, Ivan A.
    Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.
  • Article
    Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils
    (Ecological Society of America, 2006-12) Perez, Tibisay ; Garcia-Montiel, Diana ; Trumbore, Susan E. ; Tyler, Stanley ; de Camargo, Plinio ; Moreira, Marcelo ; Piccolo, Marisa C. ; Cerri, Carlos C.
    The isotopic signatures of 15N and 18O in N2O emitted from tropical soils vary both spatially and temporally, leading to large uncertainty in the overall tropical source signature and thereby limiting the utility of isotopes in constraining the global N2O budget. Determining the reasons for spatial and temporal variations in isotope signatures requires that we know the isotope enrichment factors for nitrification and denitrification, the two processes that produce N2O in soils. We have devised a method for measuring these enrichment factors using soil incubation experiments and report results from this method for three rain forest soils collected in the Brazilian Amazon: soil with differing sand and clay content from the Tapajos National Forest (TNF) near Santarém, Pará, and Nova Vida Farm, Rondônia. The 15N enrichment factors for nitrification and denitrification differ with soil texture and site: −111‰ ± 12‰ and −31‰ ± 11‰ for a clay-rich Oxisol (TNF), −102‰ ± 5‰ and −45‰ ± 5‰ for a sandier Ultisol (TNF), and −10.4‰ ± 3.5‰ (enrichment factor for denitrification) for another Ultisol (Nova Vida) soil, respectively. We also show that the isotopomer site preference (δ15Nα − δ15Nβ, where α indicates the central nitrogen atom and β the terminal nitrogen atom in N2O) may allow differentiation between processes of production and consumption of N2O and can potentially be used to determine the contributions of nitrification and denitrification. The site preferences for nitrification and denitrification from the TNF-Ultisol incubated soils are: 4.2‰ ± 8.4‰ and 31.6‰ ± 8.1‰, respectively. Thus, nitrifying and denitrifying bacteria populations under the conditions of our study exhibit significantly different 15N site preference fingerprints. Our data set strongly suggests that N2O isotopomers can be used in concert with traditional N2O stable isotope measurements as constraints to differentiate microbial N2O processes in soil and will contribute to interpretations of the isotopic site preference N2O values found in the free troposphere.