Black Peter G.

No Thumbnail Available
Last Name
First Name
Peter G.

Search Results

Now showing 1 - 3 of 3
  • Article
    An ocean coupling potential intensity index for tropical cyclones
    (John Wiley & Sons, 2013-05-15) Lin, I.-I. ; Black, Peter G. ; Price, James F. ; Yang, C.-Y. ; Chen, Shuyi S. ; Lien, Chun-Chi ; Harr, Patrick ; Chi, N.-H. ; Wu, C.-C. ; D'Asaro, Eric A.
    Timely and accurate forecasts of tropical cyclones (TCs, i.e., hurricanes and typhoons) are of great importance for risk mitigation. Although in the past two decades there has been steady improvement in track prediction, improvement on intensity prediction is still highly challenging. Cooling of the upper ocean by TC-induced mixing is an important process that impacts TC intensity. Based on detail in situ air-deployed ocean and atmospheric measurement pairs collected during the Impact of Typhoons on the Ocean in the Pacific (ITOP) field campaign, we modify the widely used Sea Surface Temperature Potential Intensity (SST_PI) index by including information from the subsurface ocean temperature profile to form a new Ocean coupling Potential Intensity (OC_PI) index. Using OC_PI as a TC maximum intensity predictor and applied to a 14 year (1998–2011) western North Pacific TC archive, OC_PI reduces SST_PI-based overestimation of archived maximum intensity by more than 50% and increases the correlation of maximum intensity estimation from r2 = 0.08 to 0.31. For slow-moving TCs that cause the greatest cooling, r2 increases to 0.56 and the root-mean square error in maximum intensity is 11 m s−1. As OC_PI can more realistically characterize the ocean contribution to TC intensity, it thus serves as an effective new index to improve estimation and prediction of TC maximum intensity.
  • Article
    Typhoon-ocean interaction in the western North Pacific : Part 1
    (The Oceanography Society, 2011-12) D'Asaro, Eric A. ; Black, Peter G. ; Centurioni, Luca R. ; Harr, Patrick ; Jayne, Steven R. ; Lin, I.-I. ; Lee, Craig M. ; Morzel, Jan ; Mrvaljevic, Rosalinda K. ; Niiler, Pearn P. ; Rainville, Luc ; Sanford, Thomas B. ; Tang, Tswen Yung
    The application of new technologies has allowed oceanographers and meteorologists to study the ocean beneath typhoons in detail. Recent studies in the western Pacific Ocean reveal new insights into the influence of the ocean on typhoon intensity.
  • Article
    Observations of the cold wake of Typhoon Fanapi (2010)
    (John Wiley & Sons, 2013-01-19) Mrvaljevic, Rosalinda K. ; Black, Peter G. ; Centurioni, Luca R. ; Chang, Ya-Ting ; D'Asaro, Eric A. ; Jayne, Steven R. ; Lee, Craig M. ; Lien, Ren-Chieh ; Lin, I.-I. ; Morzel, Jan ; Niiler, Pearn P. ; Rainville, Luc ; Sanford, Thomas B.
    Several tens of thousands of temperature profiles are used to investigate the thermal evolution of the cold wake of Typhoon Fanapi, 2010. Typhoon Fanapi formed a cold wake in the Western North Pacific Ocean on 18 September characterized by a mixed layer that was >2.5 °C cooler than the surrounding water, and extending to >80 m, twice as deep as the preexisting mixed layer. The initial cold wake became capped after 4 days as a warm, thin surface layer formed. The thickness of the capped wake, defined as the 26 °C–27 °C layer, decreased, approaching the background thickness of this layer with an e-folding time of 23 days, almost twice the e-folding lifetime of the Sea Surface Temperature (SST) cold wake (12 days). The wake was advected several hundreds of kilometers from the storm track by a preexisting mesoscale eddy. The observations reveal new intricacies of cold wake evolution and demonstrate the challenges of describing the thermal structure of the upper ocean using sea surface information alone.