Saccomanno Vienna R.

No Thumbnail Available
Last Name
Saccomanno
First Name
Vienna R.
ORCID
0000-0002-5062-778X

Search Results

Now showing 1 - 2 of 2
  • Article
    Using unoccupied aerial vehicles to map and monitor changes in emergent kelp canopy after an ecological regime shift
    (Wiley Open Access, 2022-09-21) Saccomanno, Vienna R. ; Bell, Tom W. ; Pawlak, Camille ; Stanley, Charlotte K. ; Cavanaugh, Katherine C. ; Hohman, Rietta ; Klausmeyer, Kirk R. ; Cavanaugh, Kyle ; Nickels, Abby ; Hewerdine, Waz ; Garza, Corey ; Fleener, Gary ; Gleason, Mary
    Kelp forests are complex underwater habitats that form the foundation of many nearshore marine environments and provide valuable services for coastal communities. Despite their ecological and economic importance, increasingly severe stressors have resulted in declines in kelp abundance in many regions over the past few decades, including the North Coast of California, USA. Given the significant and sustained loss of kelp in this region, management intervention is likely a necessary tool to reset the ecosystem and geospatial data on kelp dynamics are needed to strategically implement restoration projects. Because canopy‐forming kelp forests are distinguishable in aerial imagery, remote sensing is an important tool for documenting changes in canopy area and abundance to meet these data needs. We used small unoccupied aerial vehicles (UAVs) to survey emergent kelp canopy in priority sites along the North Coast in 2019 and 2020 to fill a key data gap for kelp restoration practitioners working at local scales. With over 4,300 hectares surveyed between 2019 and 2020, these surveys represent the two largest marine resource‐focused UAV surveys conducted in California to our knowledge. We present remote sensing methods using UAVs and a repeatable workflow for conducting consistent surveys, creating orthomosaics, georeferencing data, classifying emergent kelp and creating kelp canopy maps that can be used to assess trends in kelp canopy dynamics over space and time. We illustrate the impacts of spatial resolution on emergent kelp canopy classification between different sensors to help practitioners decide which data stream to select when asking restoration and management questions at varying spatial scales. Our results suggest that high spatial resolution data of emergent kelp canopy from UAVs have the potential to advance strategic kelp restoration and adaptive management.Despite their ecological and economic importance, kelp forest abundance has declined in many regions around the world including the North Coast of California. Given the significant loss of kelp in this region, management intervention is likely necessary and remotely sensed data on kelp dynamics can help inform strategic restoration projects. We used unoccupied aerial vehicles (UAVs) to survey emergent kelp canopy along the North Coast in 2019 and 2020 and present remote‐sensing based kelp survey methods using UAVs. Our results suggest that high spatial resolution data on local‐scale spatiotemporal patterns of emergent kelp canopy from UAVs have the potential to advance strategic kelp restoration and adaptive management.
  • Article
    A review of the opportunities and challenges for using remote sensing for management of surface-canopy forming kelps
    (Frontiers Media, 2021-10-20) Cavanaugh, Kyle C. ; Bell, Tom W. ; Costa, Maycira ; Eddy, Norah E. ; Gendall, Lianna ; Gleason, Mary G. ; Hessing-Lewis, Margot ; Martone, Rebecca ; McPherson, Meredith L. ; Pontier, Ondine ; Reshitnyk, Luba ; Beas-Luna, Rodrigo ; Carr, Mark H. ; Caselle, Jennifer E. ; Cavanaugh, Katherine C. ; Flores Miller, Rebecca ; Hamilton, Sara L. ; Heady, Walter N. ; Hirsh, Heidi K. ; Hohman, Rietta ; Lee, Lynn Chi ; Lorda, Julio ; Ray, James ; Reed, Daniel C. ; Saccomanno, Vienna R. ; Schroeder, Sarah B.
    Surface-canopy forming kelps provide the foundation for ecosystems that are ecologically, culturally, and economically important. However, these kelp forests are naturally dynamic systems that are also threatened by a range of global and local pressures. As a result, there is a need for tools that enable managers to reliably track changes in their distribution, abundance, and health in a timely manner. Remote sensing data availability has increased dramatically in recent years and this data represents a valuable tool for monitoring surface-canopy forming kelps. However, the choice of remote sensing data and analytic approach must be properly matched to management objectives and tailored to the physical and biological characteristics of the region of interest. This review identifies remote sensing datasets and analyses best suited to address different management needs and environmental settings using case studies from the west coast of North America. We highlight the importance of integrating different datasets and approaches to facilitate comparisons across regions and promote coordination of management strategies.